scispace - formally typeset
Search or ask a question
Author

Claire M. Healy

Bio: Claire M. Healy is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Cancer & Odds ratio. The author has an hindex of 37, co-authored 103 publications receiving 10973 citations. Previous affiliations of Claire M. Healy include Royal College of Surgeons in Ireland & University College Dublin.


Papers
More filters
Journal ArticleDOI
01 Jun 2007-Science
TL;DR: The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
Abstract: New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.

2,813 citations

Journal ArticleDOI
08 Dec 2005-Nature
TL;DR: A high-quality draft genome sequence of the domestic dog is reported, together with a dense map of single nucleotide polymorphisms (SNPs) across breeds, to shed light on the structure and evolution of genomes and genes.
Abstract: Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.

2,431 citations

Journal ArticleDOI
03 Apr 2008-Nature
TL;DR: The results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.
Abstract: Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.

1,226 citations

Journal ArticleDOI
Helena Furberg1, Yunjung Kim1, Jennifer Dackor1, Eric Boerwinkle2, Nora Franceschini1, Diego Ardissino, Luisa Bernardinelli3, Luisa Bernardinelli4, Pier Mannuccio Mannucci5, Francesco Mauri, Piera Angelica Merlini, Devin Absher, Themistocles L. Assimes6, Stephen P. Fortmann6, Carlos Iribarren7, Joshua W. Knowles6, Thomas Quertermous6, Luigi Ferrucci8, Toshiko Tanaka8, Joshua C. Bis9, Curt D. Furberg10, Talin Haritunians11, Barbara McKnight9, Bruce M. Psaty12, Bruce M. Psaty9, Kent D. Taylor11, Evan L. Thacker9, Peter Almgren13, Leif Groop13, Claes Ladenvall13, Michael Boehnke14, Anne U. Jackson14, Karen L. Mohlke1, Heather M. Stringham14, Jaakko Tuomilehto15, Jaakko Tuomilehto16, Emelia J. Benjamin17, Shih-Jen Hwang8, Daniel Levy17, Sarah R. Preis8, Ramachandran S. Vasan17, Jubao Duan18, Pablo V. Gejman18, Douglas F. Levinson6, Alan R. Sanders18, Jianxin Shi8, Esther H. Lips19, James McKay19, Antonio Agudo, Luigi Barzan, Vladimir Bencko20, Simone Benhamou21, Simone Benhamou22, Xavier Castellsagué, Cristina Canova23, David I. Conway24, Eleonora Fabianova, Lenka Foretova, Vladimir Janout25, Claire M. Healy26, Ivana Holcatova20, Kristina Kjærheim, Pagona Lagiou27, Jolanta Lissowska, Ray Lowry28, Tatiana V. Macfarlane29, Dana Mates, Lorenzo Richiardi30, Peter Rudnai, Neonilia Szeszenia-Dabrowska31, David Zaridze32, Ariana Znaor, Mark Lathrop, Paul Brennan19, Stefania Bandinelli, Timothy M. Frayling33, Jack M. Guralnik8, Yuri Milaneschi, John R. B. Perry33, David Altshuler34, David Altshuler35, Roberto Elosua, S. Kathiresan35, S. Kathiresan34, Gavin Lucas, Olle Melander13, Christopher J. O'Donnell8, Veikko Salomaa15, Stephen M. Schwartz9, Benjamin F. Voight36, Brenda W.J.H. Penninx37, Johannes H. Smit37, Nicole Vogelzangs37, Dorret I. Boomsma37, Eco J. C. de Geus37, Jacqueline M. Vink37, Gonneke Willemsen37, Stephen J. Chanock8, Fangyi Gu35, Susan E. Hankinson35, David J. Hunter35, Albert Hofman38, Henning Tiemeier38, André G. Uitterlinden38, Cornelia M. van Duijn38, Stefan Walter38, Daniel I. Chasman35, Brendan M. Everett35, Guillaume Paré35, Paul M. Ridker35, Ming D. Li39, Hermine H. Maes40, Janet Audrain-McGovern41, Danielle Posthuma37, Laura M. Thornton1, Caryn Lerman41, Jaakko Kaprio16, Jaakko Kaprio15, Jed E. Rose42, John P. A. Ioannidis43, John P. A. Ioannidis44, Peter Kraft35, Danyu Lin1, Patrick F. Sullivan1 
TL;DR: A meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium found the strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3, and three loci associated with number of cigarettes smoked per day were identified.
Abstract: Consistent but indirect evidence has implicated genetic factors in smoking behavior1,2. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], b = 1.03, standard error (s.e.) = 0.053, beta = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], b = 0.367, s. e. = 0.059, beta = 5.7 x 10(-10); and rs1028936[A], b = 0.446, s. e. = 0.074, beta = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], b = 0.333, s. e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.

1,104 citations

Journal ArticleDOI
James McKay1, Thérèse Truong1, Valerie Gaborieau1, Amelie Chabrier1, Shu Chun Chuang1, Graham Byrnes1, David Zaridze2, Oxana Shangina2, Neonila Szeszenia-Dabrowska3, Jolanta Lissowska4, Peter Rudnai, Eleonora Fabianova, Alexandru Bucur, Vladimir Bencko5, Ivana Holcatova5, Vladimir Janout, Lenka Foretova, Pagona Lagiou6, Dimitrios Trichopoulos7, Simone Benhamou8, Christine Bouchardy, Wolfgang Ahrens9, Franco Merletti10, Lorenzo Richiardi10, Renato Talamini, Luigi Barzan, Kristina Kjærheim, Gary J. Macfarlane11, Tatiana V. Macfarlane11, Lorenzo Simonato12, Cristina Canova12, Cristina Canova13, Antonio Agudo, Xavier Castellsagué, Ray Lowry14, David I. Conway15, Patricia A. McKinney16, Claire M. Healy17, Mary Toner17, Ariana Znaor, Maria Paula Curado1, Sergio Koifman18, Ana M. B. Menezes19, Victor Wünsch-Filho20, José Eluf Neto20, Leticia Fernández Garrote, Stefania Boccia21, Gabriella Cadoni21, Dario Arzani21, Andrew F. Olshan22, Mark C. Weissler22, William K. Funkhouser22, Jingchun Luo22, Jan Lubinski23, Joanna Trubicka23, Marcin Lener23, Dorota Oszutowska23, Stephen M. Schwartz24, Chu Chen24, Sherianne Fish24, David R. Doody24, Joshua E. Muscat25, Philip Lazarus25, Carla J. Gallagher25, Shen Chih Chang26, Zuo-Feng Zhang26, Qingyi Wei27, Erich M. Sturgis27, Li E. Wang27, Silvia Franceschi1, Rolando Herrero, Karl T. Kelsey28, Michael D. McClean29, Carmen J. Marsit28, Heather H. Nelson30, Marjorie Romkes31, Shama Buch31, Tomoko Nukui31, Shilong Zhong31, Martin Lacko32, Johannes J. Manni32, Wilbert H.M. Peters33, Rayjean J. Hung34, John R. McLaughlin35, Lars J. Vatten36, Inger Njølstad, Gary E. Goodman24, John K. Field37, Triantafillos Liloglou37, Paolo Vineis13, Paolo Vineis10, Françoise Clavel-Chapelon8, Domenico Palli, Rosario Tumino, Vittorio Krogh, Salvatore Panico38, Carlos A. González, J. Ramón Quirós, Carmen Enid Martínez, Carmen Navarro, Eva Ardanaz, Nerea Larrañaga, Kay-Tee Khaw39, Timothy J. Key40, H. Bas Bueno-de-Mesquita, Petra H.M. Peeters41, Antonia Trichopoulou6, Jakob Linseisen42, Heiner Boeing, Göran Hallmans43, Kim Overvad44, Anne Tjønneland, Merethe Kumle45, Elio Riboli13, Kristjan Välk46, Tõnu Voodern46, Andres Metspalu46, Diana Zelenika, Anne Boland, Marc Delepine, Mario Foglio, Doris Lechner, Hélène Blanché, Ivo Gut, Pilar Galan47, Simon Heath, Mia Hashibe1, Richard B. Hayes48, Paolo Boffetta1, Mark Lathrop, Paul Brennan1 
TL;DR: A genome-wide association study to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.
Abstract: Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

308 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work introduces PLINK, an open-source C/C++ WGAS tool set, and describes the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation, which focuses on the estimation and use of identity- by-state and identity/descent information in the context of population-based whole-genome studies.
Abstract: Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.

26,280 citations

Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
TL;DR: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.
Abstract: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Benjamin, MD, ScM, FAHA, Chair Paul Muntner, PhD, MHS, FAHA, Vice Chair Alvaro Alonso, MD, PhD, FAHA Marcio S. Bittencourt, MD, PhD, MPH Clifton W. Callaway, MD, FAHA April P. Carson, PhD, MSPH, FAHA Alanna M. Chamberlain, PhD Alexander R. Chang, MD, MS Susan Cheng, MD, MMSc, MPH, FAHA Sandeep R. Das, MD, MPH, MBA, FAHA Francesca N. Delling, MD, MPH Luc Djousse, MD, ScD, MPH Mitchell S.V. Elkind, MD, MS, FAHA Jane F. Ferguson, PhD, FAHA Myriam Fornage, PhD, FAHA Lori Chaffin Jordan, MD, PhD, FAHA Sadiya S. Khan, MD, MSc Brett M. Kissela, MD, MS Kristen L. Knutson, PhD Tak W. Kwan, MD, FAHA Daniel T. Lackland, DrPH, FAHA Tené T. Lewis, PhD Judith H. Lichtman, PhD, MPH, FAHA Chris T. Longenecker, MD Matthew Shane Loop, PhD Pamela L. Lutsey, PhD, MPH, FAHA Seth S. Martin, MD, MHS, FAHA Kunihiro Matsushita, MD, PhD, FAHA Andrew E. Moran, MD, MPH, FAHA Michael E. Mussolino, PhD, FAHA Martin O’Flaherty, MD, MSc, PhD Ambarish Pandey, MD, MSCS Amanda M. Perak, MD, MS Wayne D. Rosamond, PhD, MS, FAHA Gregory A. Roth, MD, MPH, FAHA Uchechukwu K.A. Sampson, MD, MBA, MPH, FAHA Gary M. Satou, MD, FAHA Emily B. Schroeder, MD, PhD, FAHA Svati H. Shah, MD, MHS, FAHA Nicole L. Spartano, PhD Andrew Stokes, PhD David L. Tirschwell, MD, MS, MSc, FAHA Connie W. Tsao, MD, MPH, Vice Chair Elect Mintu P. Turakhia, MD, MAS, FAHA Lisa B. VanWagner, MD, MSc, FAST John T. Wilkins, MD, MS, FAHA Sally S. Wong, PhD, RD, CDN, FAHA Salim S. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee

5,739 citations

Journal ArticleDOI
21 Apr 2006-Cell
TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.

5,131 citations

Journal ArticleDOI
14 Jun 2007-Nature
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Abstract: We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

5,091 citations