scispace - formally typeset
Search or ask a question
Author

Clare A. Puddifoot

Bio: Clare A. Puddifoot is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Induced pluripotent stem cell & Embryonic stem cell. The author has an hindex of 10, co-authored 12 publications receiving 2240 citations. Previous affiliations of Clare A. Puddifoot include Salk Institute for Biological Studies.

Papers
More filters
Journal ArticleDOI
09 Aug 2013-Science
TL;DR: The results extend the knowledge of the unique role of DNA methylation in brain development and function, and offer a new framework for testing the role of the epigenome in healthy function and in pathological disruptions of neural circuits.
Abstract: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.

1,629 citations

Journal ArticleDOI
TL;DR: It is concluded that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.
Abstract: Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.

330 citations

Journal ArticleDOI
TL;DR: It is shown here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism, and suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival.
Abstract: Synaptic activity promotes resistance to diverse apoptotic insults, the mechanism behind which is incompletely understood. We show here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism. Activity-dependent protection against apoptotic insults is associated with inhibition of cytochrome c release in most but not all neurons, indicative of anti-apoptotic signaling both upstream and downstream of this step. We find that enhanced firing activity suppresses expression of the proapoptotic BH3-only member gene Puma in a NMDA receptor-dependent, p53-independent manner. Puma expression is sufficient to induce cytochrome c loss and neuronal apoptosis. Puma deficiency protects neurons against apoptosis and also occludes the protective effect of synaptic activity, while blockade of physiological NMDA receptor activity in the developing mouse brain induces neuronal apoptosis that is preceded by upregulation of Puma. However, enhanced activity can also confer resistance to Puma-induced apoptosis, acting downstream of cytochrome c release. This mechanism is mediated by transcriptional suppression of apoptosome components Apaf-1 and procaspase-9, and limiting caspase-9 activity, since overexpression of procaspase-9 accelerates the rate of apoptosis in active neurons back to control levels. Synaptic activity does not exert further significant anti-apoptotic effects downstream of caspase-9 activation, since an inducible form of caspase-9 overrides the protective effect of synaptic activity, despite activity-induced transcriptional suppression of caspase-3. Thus, suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival.

135 citations

Journal ArticleDOI
06 Oct 2009-PLOS ONE
TL;DR: In non-adherent culture conditions, treatment with SB431542 alone for 8 days is sufficient for highly efficient and accelerated neural conversion from hESCs with negligible mesendodermal, epidermal or trophectodermal contamination and resulting neurons are electro-physiologically competent.
Abstract: Background: Neural conversion from human embryonic stem cells (hESCs) has been demonstrated in a variety of systems including chemically defined suspension culture, not requiring extrinsic signals, as well as in an adherent culture method that involves dual SMAD inhibition using Noggin and SB431542 (an inhibitor of activin/nodal signaling). Previous studies have also determined a role for activin/nodal signaling in development of the neural plate and anterior fate specification. We therefore sought to investigate the independent influence of SB431542 both on neural commitment of hESCs and positional identity of derived neural progenitors in chemically defined substrate-free conditions. Methodology/Principal Findings: We show that in non-adherent culture conditions, treatment with SB431542 alone for 8 days is sufficient for highly efficient and accelerated neural conversion from hESCs with negligible mesendodermal, epidermal or trophectodermal contamination. In addition the resulting neural progenitor population has a predominantly caudal identity compared to the more anterior positional fate of non-SB431542 treated cultures. Finally we demonstrate that resulting neurons are electro-physiologically competent. Conclusions: This study provides a platform for the efficient generation of caudal neural progenitors under defined conditions for experimental study.

97 citations

Journal ArticleDOI
TL;DR: It is shown that activin/nodal signalling inhibition, followed by sonic hedgehog agonist treatment, is sufficient for MN precursor specification, which occurs even in the presence of retinoid pathway antagonists.
Abstract: A major challenge in neurobiology is to understand mechanisms underlying human neuronal diversification. Motor neurons (MNs) represent a diverse collection of neuronal subtypes, displaying differential vulnerability in different human neurodegenerative diseases. The ability to manipulate cell subtype diversification is critical to establish accurate, clinically relevant in vitro disease models. Retinoid signalling contributes to caudal precursor specification and subsequent MN subtype diversification. Here we investigate the necessity for retinoic acid in motor neurogenesis from human embryonic stem cells. We show that activin/nodal signalling inhibition, followed by sonic hedgehog agonist treatment, is sufficient for MN precursor specification, which occurs even in the presence of retinoid pathway antagonists. Importantly, precursors mature into HB9/ChAT-expressing functional MNs. Furthermore, retinoid-independent motor neurogenesis results in a ground state biased to caudal, medial motor columnar identities from which a greater retinoid-dependent diversity of MNs, including those of lateral motor columns, can be selectively derived in vitro.

94 citations


Cited by
More filters
Journal ArticleDOI
Anshul Kundaje1, Wouter Meuleman2, Wouter Meuleman1, Jason Ernst3, Misha Bilenky4, Angela Yen2, Angela Yen1, Alireza Heravi-Moussavi4, Pouya Kheradpour1, Pouya Kheradpour2, Zhizhuo Zhang1, Zhizhuo Zhang2, Jianrong Wang1, Jianrong Wang2, Michael J. Ziller2, Viren Amin5, John W. Whitaker, Matthew D. Schultz6, Lucas D. Ward2, Lucas D. Ward1, Abhishek Sarkar1, Abhishek Sarkar2, Gerald Quon1, Gerald Quon2, Richard Sandstrom7, Matthew L. Eaton2, Matthew L. Eaton1, Yi-Chieh Wu1, Yi-Chieh Wu2, Andreas R. Pfenning2, Andreas R. Pfenning1, Xinchen Wang2, Xinchen Wang1, Melina Claussnitzer1, Melina Claussnitzer2, Yaping Liu1, Yaping Liu2, Cristian Coarfa5, R. Alan Harris5, Noam Shoresh2, Charles B. Epstein2, Elizabeta Gjoneska1, Elizabeta Gjoneska2, Danny Leung8, Wei Xie8, R. David Hawkins8, Ryan Lister6, Chibo Hong9, Philippe Gascard9, Andrew J. Mungall4, Richard A. Moore4, Eric Chuah4, Angela Tam4, Theresa K. Canfield7, R. Scott Hansen7, Rajinder Kaul7, Peter J. Sabo7, Mukul S. Bansal10, Mukul S. Bansal1, Mukul S. Bansal2, Annaick Carles4, Jesse R. Dixon8, Kai How Farh2, Soheil Feizi2, Soheil Feizi1, Rosa Karlic11, Ah Ram Kim2, Ah Ram Kim1, Ashwinikumar Kulkarni12, Daofeng Li13, Rebecca F. Lowdon13, Ginell Elliott13, Tim R. Mercer14, Shane Neph7, Vitor Onuchic5, Paz Polak2, Paz Polak15, Nisha Rajagopal8, Pradipta R. Ray12, Richard C Sallari2, Richard C Sallari1, Kyle Siebenthall7, Nicholas A Sinnott-Armstrong2, Nicholas A Sinnott-Armstrong1, Michael Stevens13, Robert E. Thurman7, Jie Wu16, Bo Zhang13, Xin Zhou13, Arthur E. Beaudet5, Laurie A. Boyer1, Philip L. De Jager15, Philip L. De Jager2, Peggy J. Farnham17, Susan J. Fisher9, David Haussler18, Steven J.M. Jones19, Steven J.M. Jones4, Wei Li5, Marco A. Marra4, Michael T. McManus9, Shamil R. Sunyaev2, Shamil R. Sunyaev15, James A. Thomson20, Thea D. Tlsty9, Li-Huei Tsai2, Li-Huei Tsai1, Wei Wang, Robert A. Waterland5, Michael Q. Zhang21, Lisa Helbling Chadwick22, Bradley E. Bernstein2, Bradley E. Bernstein15, Bradley E. Bernstein6, Joseph F. Costello9, Joseph R. Ecker11, Martin Hirst4, Alexander Meissner2, Aleksandar Milosavljevic5, Bing Ren8, John A. Stamatoyannopoulos7, Ting Wang13, Manolis Kellis2, Manolis Kellis1 
19 Feb 2015-Nature
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

5,037 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
15 Jan 2015-Nature
TL;DR: These observations indicate that the underlying DNA sequence largely accounts for local patterns of methylation, which is highly informative when studying gene regulation in normal and diseased cells, and it can potentially function as a biomarker.
Abstract: Cytosine methylation is a DNA modification generally associated with transcriptional silencing. Factors that regulate methylation have been linked to human disease, yet how they contribute to malignances remains largely unknown. Genomic maps of DNA methylation have revealed unexpected dynamics at gene regulatory regions, including active demethylation by TET proteins at binding sites for transcription factors. These observations indicate that the underlying DNA sequence largely accounts for local patterns of methylation. As a result, this mark is highly informative when studying gene regulation in normal and diseased cells, and it can potentially function as a biomarker. Although these findings challenge the view that methylation is generally instructive for gene silencing, several open questions remain, including how methylation is targeted and recognized and in what context it affects genome readout.

1,564 citations

Journal ArticleDOI
TL;DR: A much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, can be much better translated to human health.
Abstract: The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.

1,423 citations

Journal ArticleDOI
TL;DR: Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases.
Abstract: There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling.

1,373 citations