scispace - formally typeset
Search or ask a question
Author

Clare F. Macrae

Other affiliations: University of Oxford
Bio: Clare F. Macrae is an academic researcher from University of Cambridge. The author has contributed to research in topics: Visualization & Unix. The author has an hindex of 10, co-authored 12 publications receiving 17866 citations. Previous affiliations of Clare F. Macrae include University of Oxford.

Papers
More filters
Journal ArticleDOI
TL;DR: Mercury as discussed by the authors is a crystal structure visualization tool that allows highly customizable searching of structural databases for intermolecular interaction motifs and packing patterns, as well as the ability to perform packing similarity calculations between structures containing the same compound.
Abstract: The program Mercury, developed by the Cambridge Crystallographic Data Centre, is designed primarily as a crystal structure visualization tool. A new module of functionality has been produced, called the Materials Module, which allows highly customizable searching of structural databases for intermolecular interaction motifs and packing patterns. This new module also includes the ability to perform packing similarity calculations between structures containing the same compound. In addition to the Materials Module, a range of further enhancements to Mercury has been added in this latest release, including void visualization and links to ConQuest, Mogul and IsoStar.

7,879 citations

Journal ArticleDOI
TL;DR: Mercury as discussed by the authors is a crystal structure visualization program that allows to display multiple structures simultaneously and overlay them, which can be used for comparison between crystal structures and to overlay them in a table or spreadsheets.
Abstract: Since its original release, the popular crystal structure visualization program Mercury has undergone continuous further development. Comparisons between crystal structures are facilitated by the ability to display multiple structures simultaneously and to overlay them. Improvements have been made to many aspects of the visual display, including the addition of depth cueing, and highly customizable lighting and background effects. Textual and numeric data associated with structures can be shown in tables or spreadsheets, the latter opening up new ways of interacting with the visual display. Atomic displacement ellipsoids, calculated powder diffraction patterns and predicted morphologies can now be shown. Some limited molecular-editing capabilities have been added. The object-oriented nature of the C++ libraries underlying Mercury makes it easy to re-use the code in other applications, and this has facilitated three-dimensional visualization in several other programs produced by the Cambridge Crystallographic Data Centre.

6,180 citations

Journal ArticleDOI
TL;DR: Two new programs have been developed for searching the Cambridge Structural Database (CSD) and visualizing database entries: ConQuest and Mercury, a high-performance crystal-structure visualizer with extensive facilities for exploring networks of intermolecular contacts.
Abstract: Two new programs have been developed for searching the Cambridge Structural Database (CSD) and visualizing database entries: ConQuest and Mercury The former is a new search interface to the CSD, the latter is a high-performance crystal-structure visualizer with extensive facilities for exploring networks of intermolecular contacts Particular emphasis has been placed on making the programs as intuitive as possible Both ConQuest and Mercury run under Windows and various types of Unix, including Linux

2,689 citations

Journal ArticleDOI
TL;DR: An overview of Mercury 4.0, an analysis, design and prediction platform that acts as a hub for the entire Cambridge Structural Database software suite, is presented.
Abstract: The program Mercury, developed at the Cambridge Crystallographic Data Centre, was originally designed primarily as a crystal structure visualization tool. Over the years the fields and scientific communities of chemical crystallography and crystal engineering have developed to require more advanced structural analysis software. Mercury has evolved alongside these scientific communities and is now a powerful analysis, design and prediction platform which goes a lot further than simple structure visualization.

2,075 citations

Journal ArticleDOI
TL;DR: The CSD itself acts as a computerized depository for large-volume numerical results for some 30 journals and may conveniently be categorized according to its "dimensionality", as described below and illustrated in Figure 1.
Abstract: ed, together with any associated supplementary (deposited) data. The CSD itself acts as a computerized depository for large-volume numerical results for some 30 journals. A total of 584 primary sources are now referenced in the CSD, of which 74 are regularly scanned in-house to provide ca. 80% of current input. Remaining references are located via a scan of secondary sources, particularly Chemical Abstracts. Each entry in the CSD relates to a specific crystal structure determination of a specific chemical compound. Each entry is identified by a CSD reference code (REFCODE). This consists of eight characters: the first six are alphabetic and identify the chemical compound (initially assigned as a mnemonic of the compound name, now generated automatically for new compounds), the last two characters are digits which trace the publication history and define (a) whether the paper is a republication by the same authors (perhaps reporting an improved coordinate set) or (b) whether the paper is a redetermination by a different set of authors. The information recorded for each entry may conveniently be categorized according to its "dimensionality", as described below and illustrated in Figure 1. 1 D information consists of bibliographic and chemical text strings, together with certain individual numeric items: comBATCH OR VERSION 4 GRAPHICS VERSION 4 GRAPHICS

1,205 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Cambridge Structural Database now contains data for more than a quarter of a million small-molecule crystal structures, and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.
Abstract: The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500000 crystal structures by the year 2010.

9,865 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: Mercury as discussed by the authors is a crystal structure visualization tool that allows highly customizable searching of structural databases for intermolecular interaction motifs and packing patterns, as well as the ability to perform packing similarity calculations between structures containing the same compound.
Abstract: The program Mercury, developed by the Cambridge Crystallographic Data Centre, is designed primarily as a crystal structure visualization tool. A new module of functionality has been produced, called the Materials Module, which allows highly customizable searching of structural databases for intermolecular interaction motifs and packing patterns. This new module also includes the ability to perform packing similarity calculations between structures containing the same compound. In addition to the Materials Module, a range of further enhancements to Mercury has been added in this latest release, including void visualization and links to ConQuest, Mogul and IsoStar.

7,879 citations

Journal ArticleDOI
TL;DR: The creation, maintenance, information content and availability of the Cambridge Structural Database (CSD), the world’s repository of small molecule crystal structures, are described.
Abstract: The Cambridge Structural Database (CSD) contains a complete record of all published organic and metal–organic small-molecule crystal structures. The database has been in operation for over 50 years and continues to be the primary means of sharing structural chemistry data and knowledge across disciplines. As well as structures that are made public to support scientific articles, it includes many structures published directly as CSD Communications. All structures are processed both computationally and by expert structural chemistry editors prior to entering the database. A key component of this processing is the reliable association of the chemical identity of the structure studied with the experimental data. This important step helps ensure that data is widely discoverable and readily reusable. Content is further enriched through selective inclusion of additional experimental data. Entries are available to anyone through free CSD community web services. Linking services developed and maintained by the CCDC, combined with the use of standard identifiers, facilitate discovery from other resources. Data can also be accessed through CCDC and third party software applications and through an application programming interface.

6,313 citations

Journal ArticleDOI
TL;DR: GOLD (Genetic Optimisation for Ligand Docking) is an automated ligand docking program that uses a genetic algorithm to explore the full range of ligand conformational flexibility with partial flexibility of the protein, and satisfies the fundamental requirement that the ligand must displace loosely bound water on binding.

5,882 citations