scispace - formally typeset
Search or ask a question
Author

Clare M. Hamilton

Bio: Clare M. Hamilton is an academic researcher from Ross University School of Veterinary Medicine. The author has contributed to research in topics: Toxoplasma gondii & Neospora caninum. The author has an hindex of 19, co-authored 35 publications receiving 1249 citations. Previous affiliations of Clare M. Hamilton include University College Dublin & Dublin City University.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the immune response generated in the dams in group 2 prior to pregnancy had protected against vertical transmission of the parasite following challenge at mid-gestation.

179 citations

Journal ArticleDOI
TL;DR: Recombinant forms of F. hepatica FhCL1 and FhGST-si modulate host immunity by suppressing responses associated with chronic inflammation—an immune modulatory mechanism that may benefit the parasite's survival within the host.
Abstract: Fasciola hepatica is a helminth pathogen that drives Th2/Treg immune responses in its mammalian host. The parasite releases a large number of molecules that are critical to inducing this type of immune response. Here we have selected recombinant forms of two major F. hepatica secreted molecules, the protease cathepsin L (rFhCL1) and an antioxidant, sigma class glutathione transferase (rFhGST-si), to examine their interactions with dendritic cells (DCs). Despite enzymatic and functional differences between these molecules, both induced interleukin-6 (IL-6), IL-12p40, and macrophage inflammatory protein 2 (MIP-2) secretion from DCs and enhanced CD40 expression. While this induction was mediated by Toll-like receptor 4 (TLR4), the subsequent intracellular signaling pathways differed; rFhCL1 signaled through p38, and rFhGST-si mediated its effect via c-Jun N-terminal kinase (JNK), p38, p-NF-κBp65, and IRF5. Neither rFhCL1 nor rFhGST-si enhanced DC phagocytosis or induced Th2 immune responses in vivo. However, DCs matured in the presence of either enzyme attenuated IL-17 production from OVA peptide-specific T cells in vivo. In addition, DCs exposed to either antigen secreted reduced levels of IL-23. Therefore, both F. hepatica FhCL1 and FhGST-si modulate host immunity by suppressing responses associated with chronic inflammation—an immune modulatory mechanism that may benefit the parasite's survival within the host.

115 citations

Journal ArticleDOI
TL;DR: The results demonstrate the potent anti- inflammation properties of F. hepatica Teg and its therapeutic potential as an anti-inflammatory agent.
Abstract: Parasitic worms and molecules derived from them have powerful anti-inflammatory properties and are shown to have therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress antigen-specific Th1 responses in concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. Here, F. hepatica tegumental antigen (Teg) was shown to significantly suppress serum levels of gamma interferon (IFN-γ) and interleukin-12p70 (IL-12p70) in a model of septic shock. Since dendritic cells (DCs) are a good source of IL-12p70 and critical in driving adaptive immunity, we investigated the effects of F. hepatica Teg on the activation and function of murine DCs. While Teg alone did not induce cytokine production or cell surface marker expression on DCs, it significantly suppressed cytokine production (IL-12p70, IL-6, IL-10, tumor necrosis factor alpha, and nitrite) and cell surface marker expression (CD80, CD86, and CD40) in DCs matured with a range of Toll-like receptor (TLR) and non-TLR ligands. Teg works independently of the TLR4 pathway, since it still functioned in DCs generated from TLR4 mutant and knockout mice. It impaired DC function by inhibiting their phagocytic capacity and their ability to prime T cells. It does not appear to target the common components (extracellular signal-regulated kinase, Jun N-terminal protein kinase, or p38) of the TLR pathways; however, it suppressed the active p65 subunit of the transcription factor NF-κB in mature DCs, which could explain the impairment of proinflammatory cytokine production. Overall, our results demonstrate the potent anti-inflammatory properties of F. hepatica Teg and its therapeutic potential as an anti-inflammatory agent.

112 citations

Journal ArticleDOI
TL;DR: It is concluded that in bovine neosporosis the placenta plays a central role in the pathogenesis and epidemiology of the infection, and that while primary tissue destruction by the parasite may endanger the fetus, the maternal and fetal inflammatory responses may also be damaging.

96 citations

Journal ArticleDOI
TL;DR: In the sc-inoculated dams with live fetuses at 28, 42 and 56dpi, there was no evidence of parasite antigen, infiltration of immune cells or production of IFN-gamma, suggesting that the parasite had not reached the placenta.

89 citations


Cited by
More filters
Journal ArticleDOI
01 Feb 1963-Nature
TL;DR: Experimental NeurologyBy Prof. Paul Glees.
Abstract: Experimental Neurology By Prof Paul Glees Pp xii + 532 (Oxford: Clarendon Press; London: Oxford University Press, 1961) 75s net

1,559 citations

Journal ArticleDOI
TL;DR: This review is focused mainly on the epidemiology and control of neosporosis in cattle, but worldwide seroprevalences of N. caninum in animals and humans are tabulated.
Abstract: Neospora caninum is a protozoan parasite of animals. Until 1988, it was misidentified as Toxoplasma gondii. Since its first recognition in dogs in 1984 and the description of the new genus and species Neospora caninum in 1988, neosporosis has emerged as a serious disease of cattle and dogs worldwide. Abortions and neonatal mortality are a major problem in livestock operations, and neosporosis is a major cause of abortion in cattle. Although antibodies to N. caninum have been reported, the parasite has not been detected in human tissues. Thus, the zoonotic potential is uncertain. This review is focused mainly on the epidemiology and control of neosporosis in cattle, but worldwide seroprevalences of N. caninum in animals and humans are tabulated. The role of wildlife in the life cycle of N. caninum and strategies for the control of neosporosis in cattle are discussed.

977 citations

01 Jan 1996
TL;DR: In vitro depletion experiments indicated that CD4+ lymphocytes are the major source of the latter cytokine in the spleen cell populations, and in vivo depletion with anti-CD4 Abs protected the IL-10 KO mice from parasite-induced mortality.
Abstract: To examine the function of IL-10 synthesis during early infection with the intracellular protozoan Toxoplasma gondii, IL-10 knockout (KO) mice were inoculated with an avirulent parasite strain (ME-49). In contrast to control littermates that displayed 100% survival, the IL-10-deficient animals succumbed within the first 2 wk of the infection, with no evidence of enhanced parasite proliferation. The mortality in the IL-10 KO mice was associated with enhanced liver pathology characterized by increased cellular infiltration and intense necrosis. Levels of IL-12 and IFN-gamma in sera of infected IL-10-deficient animals were four- to sixfold higher than those in sera from control mice, as were mRNA levels for IFN-gamma, IL-1 beta, TNF-alpha, and IL-12 in lung tissue. Similarly, macrophages from IL-10 KO mice activated in vitro or in vivo with T. gondii produced higher levels of TNF-alpha and IL-12 than macrophages from control animals. Moreover, spleen cells from IL-10 KO mice infected with T. gondii secreted more IFN-gamma than splenocytes from nondeficient animals. In vitro depletion experiments indicated that CD4+ lymphocytes are the major source of the latter cytokine in the spleen cell populations, and in vivo depletion with anti-CD4 Abs protected the IL-10 KO mice from parasite-induced mortality. Together the data suggest that endogenous IL-10 synthesis plays an important role in vivo in down-regulating monokine and IFN-gamma responses to acute intracellular infection, thereby preventing host immunopathology.

864 citations

Journal ArticleDOI
TL;DR: Information on biology, diagnosis, epidemiology and control of neosporosis in animals, a major cause of abortion in cattle in many countries, is reviewed.
Abstract: Neospora caninum is a coccidian parasite of animals. It is a major pathogen for cattle and dogs and it occasionally causes clinical infections in horses, goats, sheep, and deer. Domestic dogs are the only known definitive hosts for N. caninum. It is one of the most efficiently transmitted parasite of cattle and up to 90% of cattle in some herds are infected. Transplacental transmission is considered the major route of transmission of N. caninum in cattle. Neospora caninum is a major cause of abortion in cattle in many countries. To elicit protective immunity against abortion in cows that already harbor a latent infection is a major problem. This paper reviews information on biology, diagnosis, epidemiology and control of neosporosis in animals.

770 citations

Journal ArticleDOI
TL;DR: Advances in knowledge about infection and immunity in the female genital tract should be exploited to develop new therapeutics for uterine disease.
Abstract: Uterine microbial disease affects half of all dairy cattle after parturition, causing infertility by disrupting uterine and ovarian function. Infection with Escherichia coli, Arcanobacterium pyogenes, and bovine herpesvirus 4 causes endometrial tissue damage. Toll-like receptors on endometrial cells detect pathogen-associated molecules such as bacterial DNA, lipids, and lipopolysaccharide (LPS), leading to secretion of cytokines, chemokines, and antimicrobial peptides. Chemokines attract neutrophils and macrophages to eliminate the bacteria, although persistence of neutrophils is associated with subclinical endometritis and infertility. Cows with uterine infections are less likely to ovulate because they have slower growth of the postpartum dominant follicle in the ovary, lower peripheral plasma estradiol concentrations, and perturbation of hypothalamic and pituitary function. The follicular fluid of animals with endometritis contains LPS, which is detected by the TLR4/CD14/LY96 (MD2) receptor complex on granulosa cells, leading to lower aromatase expression and reduced estradiol secretion. If cows with uterine disease ovulate, the peripheral plasma concentrations of progesterone are lower than those in normal animals. However, luteal phases are often extended in animals with uterine disease, probably because infection switches the endometrial epithelial secretion of prostaglandins from the F series to the E series by a phospholipase A2-mediated mechanism, which would disrupt luteolysis. The regulation of endometrial immunity depends on steroid hormones, somatotrophins, and local regulatory proteins. Advances in knowledge about infection and immunity in the female genital tract should be exploited to develop new therapeutics for uterine disease.

758 citations