scispace - formally typeset
Search or ask a question
Author

Clarence J. Peters

Bio: Clarence J. Peters is an academic researcher from University of Texas Medical Branch. The author has contributed to research in topics: Hantavirus pulmonary syndrome & Hantavirus. The author has an hindex of 57, co-authored 109 publications receiving 11254 citations. Previous affiliations of Clarence J. Peters include Centers for Disease Control and Prevention & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
05 Nov 1993-Science
TL;DR: A mysterious respiratory illness with high mortality was recently reported in the southwestern United States and nucleotide sequence analysis revealed the associated virus to be a new hantavirus and provided a direct genetic link between infection in patients and rodents.
Abstract: A mysterious respiratory illness with high mortality was recently reported in the southwestern United States. Serologic studies implicated the hantaviruses, rodent-borne RNA viruses usually associated elsewhere in the world with hemorrhagic fever with renal syndrome. A genetic detection assay amplified hantavirus-specific DNA fragments from RNA extracted from the tissues of patients and deer mice (Peromyscus maniculatus) caught at or near patient residences. Nucleotide sequence analysis revealed the associated virus to be a new hantavirus and provided a direct genetic link between infection in patients and rodents.

1,028 citations

Journal ArticleDOI
08 May 2002-JAMA
TL;DR: Weapons disseminating a number of HFVs could cause an outbreak of an undifferentiated febrile illness 2 to 21 days later, associated with clinical manifestations that could include rash, hemorrhagic diathesis, and shock.
Abstract: ObjectiveTo develop consensus-based recommendations for measures to be taken by medical and public health professionals if hemorrhagic fever viruses (HFVs) are used as biological weapons against a civilian populationParticipantsThe Working Group on Civilian Biodefense included 26 representatives from academic medical centers, public health, military services, governmental agencies, and other emergency management institutionsEvidenceMEDLINE was searched from January 1966 to January 2002 Retrieved references, relevant material published prior to 1966, and additional sources identified by participants were reviewedConsensus ProcessThree formal drafts of the statement that synthesized information obtained in the evidence-gathering process were reviewed by the working group Each draft incorporated comments and judgments of the members All members approved the final draftConclusionsWeapons disseminating a number of HFVs could cause an outbreak of an undifferentiated febrile illness 2 to 21 days later, associated with clinical manifestations that could include rash, hemorrhagic diathesis, and shock The mode of transmission and clinical course would vary depending on the specific pathogen Diagnosis may be delayed given clinicians' unfamiliarity with these diseases, heterogeneous clinical presentation within an infected cohort, and lack of widely available diagnostic tests Initiation of ribavirin therapy in the early phases of illness may be useful in treatment of some of these viruses, although extensive experience is lacking There are no licensed vaccines to treat the diseases caused by HFVs

661 citations

Journal ArticleDOI
TL;DR: Clinical, laboratory, and autopsy data on the first 17 persons with confirmed infection from this newly recognized strain of hantavirus identified as the cause of an outbreak of severe respiratory illness in the southwestern United States are analyzed.
Abstract: Background In May 1993 an outbreak of severe respiratory illness occurred in the southwestern United States. A previously unknown hantavirus was identified as the cause. In Asia hantaviruses are associated with hemorrhagic fever and renal disease. They have not been known as a cause of human disease in North America. Methods We analyzed clinical, laboratory, and autopsy data on the first 17 persons with confirmed infection from this newly recognized strain of hantavirus. Results The mean age of the patients was 32.2 years (range, 13 to 64); 61 percent were women, 72 percent were Native American, 22 percent white, and 6 percent Hispanic. The most common prodromal symptoms were fever and myalgia (100 percent), cough or dyspnea (76 percent), gastrointestinal symptoms (76 percent), and headache (71 percent). The most common physical findings were tachypnea (100 percent), tachycardia (94 percent), and hypotension (50 percent). The laboratory findings included leukocytosis (median peak cell count, 26,000 per cu...

568 citations

Journal Article
TL;DR: Pulmonary histopathological features were similar in most of the fatal HPS cases and consisted of an interstitial pneumonitis with a variable mononuclear cell infiltrate, edema, and focal hyaline membranes, however, pulmonary features were significantly different and included diffuse alveolar damage and variable degrees of severe air space disorganization.
Abstract: A recent outbreak of a severe pulmonary disease in the southwestern United States was etiologically linked to a previously unrecognized hantavirus The virus has been isolated from its major reservoir, the deer mouse, Peromyscus maniculatus, and recently named Sin Nombre virus Clinically, the disease has become known as the hantavirus pulmonary syndrome (HPS) Since May 1993, 44 fatal cases of HPS have been identified through clinicopathological review and immunohistochemical (IHC) testing of tissues from 273 patients who died of an unexplained noncardiogenic pulmonary edema In 158 cases for which suitable specimens were available, serological testing and/or reverse transcription-polymerase chain reaction (RT-PCR) amplification of extracted RNA was also performed IHC, serological, and PCR results were concordant for virtually all HPS and non-HPS patients when more than one assay was performed The prodromal illness of HPS is similar to that of many other viral diseases Consistent hematological features include thrombocytopenia, hemoconcentration, neutrophilic leukocytosis with a left shift, and reactive lymphocytes Pulmonary histopathological features were similar in most of the fatal HPS cases (40/44) and consisted of an interstitial pneumonitis with a variable mononuclear cell infiltrate, edema, and focal hyaline membranes In four cases, however, pulmonary features were significantly different and included diffuse alveolar damage and variable degrees of severe air space disorganization IHC analysis showed widespread presence of hantaviral antigens in endothelial cells of the microvasculature, particularly in the lung Hantaviral antigens were also observed within follicular dendritic cells, macrophages, and lymphocytes Hantaviral inclusions were observed in endothelial cells of lungs by thinsection electron microscopy, and their identity was verified by immunogold labeling Virus-like particles were seen in pulmonary endothelial cells and macrophages HPS is a newly recognized, often fatal disease, with a spectrum of microscopic morphological changes, which may be an important cause of severe and fatal illness presenting as adult respiratory distress syndrome

568 citations

Journal ArticleDOI
20 Apr 2012-PLOS ONE
TL;DR: These SARS-CoV vaccines all induced antibody and protection against infection with SARS -CoV, however, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARsCoV components was induced.
Abstract: Background Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease.

507 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
TL;DR: A novel coronavirus is associated with this outbreak of severe acute respiratory syndrome, and the evidence indicates that this virus has an etiologic role in SARS.
Abstract: background A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. methods We received clinical specimens from patients in six countries and tested them, using virus isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. results No classic respiratory or bacterial respiratory pathogen was consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted microscopically in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination of cultures revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription–polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point source outbreak. Indirect fluorescent antibody tests and enzyme-linked immunosorbent assays made with the new coronavirus isolate have been used to demonstrate a virus-specific serologic response. Preliminary studies suggest that this virus may never before have infected the U.S. population. conclusions A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. The name Urbani SARS-associated coronavirus is proposed for the virus.

4,065 citations

Journal ArticleDOI
TL;DR: A review of the changing epidemiology of dengue and hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both Dengue fever and DVF, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control can be found in this paper.
Abstract: Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to devleop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.

3,886 citations

Journal ArticleDOI
David E. Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M. White1, Matthew J. O’Meara2, Veronica V. Rezelj3, Jeffrey Z. Guo, Danielle L. Swaney, Tia A. Tummino4, Ruth Hüttenhain, Robyn M. Kaake, Alicia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey M. Haas, Maya Modak, Minkyu Kim, Paige Haas, Benjamin J. Polacco, Hannes Braberg, Jacqueline M. Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J. Bennett, Merve Cakir, Michael McGregor, Qiongyu Li, Bjoern Meyer3, Ferdinand Roesch3, Thomas Vallet3, Alice Mac Kain3, Lisa Miorin1, Elena Moreno1, Zun Zar Chi Naing, Yuan Zhou, Shiming Peng4, Ying Shi, Ziyang Zhang, Wenqi Shen, Ilsa T Kirby, James E. Melnyk, John S. Chorba, Kevin Lou, Shizhong Dai, Inigo Barrio-Hernandez5, Danish Memon5, Claudia Hernandez-Armenta5, Jiankun Lyu4, Christopher J.P. Mathy, Tina Perica4, Kala Bharath Pilla4, Sai J. Ganesan4, Daniel J. Saltzberg4, Rakesh Ramachandran4, Xi Liu4, Sara Brin Rosenthal6, Lorenzo Calviello4, Srivats Venkataramanan4, Jose Liboy-Lugo4, Yizhu Lin4, Xi Ping Huang7, Yongfeng Liu7, Stephanie A. Wankowicz, Markus Bohn4, Maliheh Safari4, Fatima S. Ugur, Cassandra Koh3, Nastaran Sadat Savar3, Quang Dinh Tran3, Djoshkun Shengjuler3, Sabrina J. Fletcher3, Michael C. O’Neal, Yiming Cai, Jason C.J. Chang, David J. Broadhurst, Saker Klippsten, Phillip P. Sharp4, Nicole A. Wenzell4, Duygu Kuzuoğlu-Öztürk4, Hao-Yuan Wang4, Raphael Trenker4, Janet M. Young8, Devin A. Cavero4, Devin A. Cavero9, Joseph Hiatt4, Joseph Hiatt9, Theodore L. Roth, Ujjwal Rathore9, Ujjwal Rathore4, Advait Subramanian4, Julia Noack4, Mathieu Hubert3, Robert M. Stroud4, Alan D. Frankel4, Oren S. Rosenberg, Kliment A. Verba4, David A. Agard4, Melanie Ott, Michael Emerman8, Natalia Jura, Mark von Zastrow, Eric Verdin10, Eric Verdin4, Alan Ashworth4, Olivier Schwartz3, Christophe d'Enfert3, Shaeri Mukherjee4, Matthew P. Jacobson4, Harmit S. Malik8, Danica Galonić Fujimori, Trey Ideker6, Charles S. Craik, Stephen N. Floor4, James S. Fraser4, John D. Gross4, Andrej Sali, Bryan L. Roth7, Davide Ruggero, Jack Taunton4, Tanja Kortemme, Pedro Beltrao5, Marco Vignuzzi3, Adolfo García-Sastre, Kevan M. Shokat, Brian K. Shoichet4, Nevan J. Krogan 
30 Apr 2020-Nature
TL;DR: A human–SARS-CoV-2 protein interaction map highlights cellular processes that are hijacked by the virus and that can be targeted by existing drugs, including inhibitors of mRNA translation and predicted regulators of the sigma receptors.
Abstract: A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19. A human–SARS-CoV-2 protein interaction map highlights cellular processes that are hijacked by the virus and that can be targeted by existing drugs, including inhibitors of mRNA translation and predicted regulators of the sigma receptors.

3,319 citations

Journal ArticleDOI
TL;DR: The interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression is described and the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation are highlighted.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract - severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.

3,236 citations