scispace - formally typeset
Search or ask a question
Author

Clarence Zener

Bio: Clarence Zener is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Solar energy & Geometric programming. The author has an hindex of 38, co-authored 95 publications receiving 21989 citations. Previous affiliations of Clarence Zener include University of Chicago & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that both electrical conduction and ferromagnetic coupling in these compounds arise from a double exchange process, and a quantitative relation was developed between electrical conductivity and the Ferromagnetic Curie temperature.
Abstract: Recently, Jonker and Van Santen have found an empirical correlation between electrical conduction and ferromagnetism in certain compounds of manganese with perovskite structure. This observed correlation is herein interpreted in terms of those principles governing the interaction of the $d$-shells of the transition metals which were enunciated in the first paper of this series. Both electrical conduction and ferromagnetic coupling in these compounds are found to arise from a double exchange process, and a quantitative relation is developed between electrical conductivity and the ferromagnetic Curie temperature.

5,097 citations

Journal ArticleDOI
TL;DR: In this paper, the crossing of a polar and homopolar state of a molecule with stationary nuclei has been studied, and the essential features may be illustrated in the crossing.
Abstract: The crossing of energy levels has been a matter of considerable discussion. The essential features may be illustrated in the crossing of a polar and homopolar state of a molecule. Let ψ1 ( x /R), ψ2 ( x /R) be two electronic eigenfunctions of a molecule with stationary nuclei. Let these eigenfunctions have the property that for R≫R, ψ1 has polar characteristics, ψ2 homopolar; while at R≪R, ψ2 has polar characteristics, ψ1 homopolar. In the region R=R these two eigenfunctions may be said to exchange their characteristics.

3,509 citations

Journal ArticleDOI
TL;DR: In this paper, an experiment was designed to check the equivalence of the effects of changes in strain rate and in temperature on the stress-strain relation in metal deformation.
Abstract: An experiment has been designed to check a previously proposed equivalence of the effects of changes in strain rate and in temperature upon the stress‐strain relation in metals. It is found that this equivalence is valid for the typical steels investigated. The behavior of these steels at very high rates of deformation may, therefore, be obtained by tests at moderate rates of deformation performed at low temperatures. The results of such tests are described. Aside from changing the isothermal stress‐strain relation, an increase of strain rate tends to change the conditions from isothermal to adiabatic. It is found that at low temperatures, the adiabatic stress‐strain relation in the plastic range is radically different from the isothermal, having an initial negative rather than a positive slope. This initial negative slope renders unstable homogeneous plastic deformation.

2,263 citations

Book
01 Jan 1948

1,804 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the spin coupling between the incomplete $d$ shells and the conduction electrons leads to a tendency for a ferromagnetic alignment of $d $ spins.
Abstract: It is assumed (1) that the interaction between the incomplete $d$ shells of the transition elements is insufficient to disrupt the coupling between the $d$ electrons in the same shells, and (2) that the exchange interaction between adjacent $d$ shells always has the same sign irrespective of distance of separation. The direct interaction between adjacent $d$ shells then invariably leads to a tendency for an antiferromagnetic alignment of $d$ spins. The body-centered cubic structure of the transition metals V, Cr, Cb, Mo, Ta, and W is thereby interpreted, as well as more complex lattices of certain alloys. It is demonstrated that the spin coupling between the incomplete $d$ shells and the conduction electrons leads to a tendency for a ferromagnetic alignment of $d$ spins. The occurrence of ferromagnetism is thereby interpreted in a much more straightforward manner than through the ad hoc assumption of a reversal in sign of the exchange integral. The occurrence of antiferromagnetism and of ferromagnetism in various systems is readily understood, and certain simple rules are deduced for deciding which type of magnetism will occur in particular alloys.

1,660 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a modification of the nudged elastic band method for finding minimum energy paths is presented, where one of the images is made to climb up along the elastic band to converge rigorously on the highest saddle point.
Abstract: A modification of the nudged elastic band method for finding minimum energy paths is presented. One of the images is made to climb up along the elastic band to converge rigorously on the highest saddle point. Also, variable spring constants are used to increase the density of images near the top of the energy barrier to get an improved estimate of the reaction coordinate near the saddle point. Applications to CH4 dissociative adsorption on Ir~111! and H2 on Si~100! using plane wave based density functional theory are presented. © 2000 American Institute of Physics. @S0021-9606~00!71246-3#

14,071 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this paper, the locus of the dielectric constant in the complex plane was defined to be a circular arc with end points on the axis of reals and center below this axis.
Abstract: The dispersion and absorption of a considerable number of liquid and dielectrics are represented by the empirical formula e*−e∞=(e0−e∞)/[1+(iωτ0)1−α]. In this equation, e* is the complex dielectric constant, e0 and e∞ are the ``static'' and ``infinite frequency'' dielectric constants, ω=2π times the frequency, and τ0 is a generalized relaxation time. The parameter α can assume values between 0 and 1, the former value giving the result of Debye for polar dielectrics. The expression (1) requires that the locus of the dielectric constant in the complex plane be a circular arc with end points on the axis of reals and center below this axis.If a distribution of relaxation times is assumed to account for Eq. (1), it is possible to calculate the necessary distribution function by the method of Fuoss and Kirkwood. It is, however, difficult to understand the physical significance of this formal result.If a dielectric satisfying Eq. (1) is represented by a three‐element electrical circuit, the mechanism responsible...

8,409 citations

Journal ArticleDOI
11 Feb 2000-Science
TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract: Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.

7,062 citations

Journal ArticleDOI
01 Sep 1951
TL;DR: In this paper, an attempt is made to explain the observed phenomena in the yielding and ageing of mild steel, described in two previous papers, in the general terms of a grain-boundary theory.
Abstract: An attempt is made here to explain the observed phenomena in the yielding and ageing of mild steel, described in two previous papers, in the general terms of a grain-boundary theory. On this hypothesis, a satisfactory explanation of the variation of the lower yield point with grain size may be developed. It is shown that strain-ageing must involve two processes: a healing of the grain-boundary films, coupled with a hardening in the grains themselves. A discussion of the possible nature of the grain-boundary film is also undertaken.

5,893 citations