scispace - formally typeset
Search or ask a question
Author

Claude Berrou

Bio: Claude Berrou is an academic researcher from Institut Mines-Télécom. The author has contributed to research in topics: Turbo code & Convolutional code. The author has an hindex of 36, co-authored 120 publications receiving 24376 citations. Previous affiliations of Claude Berrou include Orange S.A. & École nationale supérieure des télécommunications de Bretagne.


Papers
More filters
Proceedings Article
01 Jan 1993

7,742 citations

Proceedings ArticleDOI
23 May 1993
TL;DR: In this article, a new class of convolutional codes called turbo-codes, whose performances in terms of bit error rate (BER) are close to the Shannon limit, is discussed.
Abstract: A new class of convolutional codes called turbo-codes, whose performances in terms of bit error rate (BER) are close to the Shannon limit, is discussed. The turbo-code encoder is built using a parallel concatenation of two recursive systematic convolutional codes, and the associated decoder, using a feedback decoding rule, is implemented as P pipelined identical elementary decoders. >

5,963 citations

Journal ArticleDOI
TL;DR: A new family of convolutional codes, nicknamed turbo-codes, built from a particular concatenation of two recursive systematic codes, linked together by nonuniform interleaving appears to be close to the theoretical limit predicted by Shannon.
Abstract: This paper presents a new family of convolutional codes, nicknamed turbo-codes, built from a particular concatenation of two recursive systematic codes, linked together by nonuniform interleaving. Decoding calls on iterative processing in which each component decoder takes advantage of the work of the other at the previous step, with the aid of the original concept of extrinsic information. For sufficiently large interleaving sizes, the correcting performance of turbo-codes, investigated by simulation, appears to be close to the theoretical limit predicted by Shannon.

3,003 citations

Journal ArticleDOI
01 Sep 1995
TL;DR: The results obtained show that turbo-equalization manages to overcome multipath effects, totally on Gauss channels, and partially but still satisfactorily on Rayleigh channels.
Abstract: This paper presents a receiving scheme intended to combat the detrimental effects of intersymbol interference for digital transmissions protected by convolutional codes. The receiver performs two successive soft-output decisions, achieved by a symbol detector and a channel decoder, through an iterative process. At each iteration, extrinsic information is extracted from the detection and decoding steps and is then used at the next iteration as in turbo-decoding. From the implementation point of view, the receiver can be structured in a modular way and its performance, in bit error rate terms, is directly related to the number of modules used. Simulation results are presented for transmissions on Gauss and Rayleigh channels. The results obtained show that turbo-equalization manages to overcome multipath effects, totally on Gauss channels, and partially but still satisfactorily on Rayleigh channels.

1,411 citations

01 Jan 1993
TL;DR: A new class of convolutional codes called turbo-codes, whose performances in terms of bit error rate (BER) are close to the Shannon limit, is discussed.
Abstract: A new class of convolutional codes called turbo-codes, whose performances in terms of bit error rate (BER) are close to the Shannon limit, is discussed. The turbo-code encoder is built using a parallel concatenation of two recursive systematic convolutional codes, and the associated decoder, using a feedback decoding rule, is implemented as P pipelined identical elementary decoders.<>

1,286 citations


Cited by
More filters
Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Abstract: This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bit-rates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multi-element array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon‘s classical formula scales as one more bit/cycle for every 3 dB of signal-to-noise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99% of the channels the capacity is about 7, 19 and 88 bits/cycle respectively, while if n = 1 there is only about 1.2 bit/cycle at the 99% level. For say a symbol rate equal to the channel bandwith, since it is the bits/symbol/dimension that is relevant for signal constellations, these higher capacities are not unreasonable. The 19 bits/cycle for n = 4 amounts to 4.75 bits/symbol/dimension while 88 bits/cycle for n = 16 amounts to 5.5 bits/symbol/dimension. Standard approaches such as selection and optimum combining are seen to be deficient when compared to what will ultimately be possible. New codecs need to be invented to realize a hefty portion of the great capacity promised.

10,526 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
01 Jan 2005

9,038 citations

Book
06 Oct 2003
TL;DR: A fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Abstract: Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

8,091 citations