scispace - formally typeset
Search or ask a question
Author

Claude Berthier

Bio: Claude Berthier is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Superconductivity & Magnetic field. The author has an hindex of 34, co-authored 145 publications receiving 5350 citations. Previous affiliations of Claude Berthier include University of Paris & University of Grenoble.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, conductivity, N.M.R. and D.S.C. measurements in two P(EO) complexes are presented, and the elastomeric phase is shown to be responsible of the ionic conductivity at all temperatures.

967 citations

Journal ArticleDOI
08 Sep 2011-Nature
TL;DR: Nuclear magnetic resonance measurements are reported showing that high magnetic fields actually induce charge order, without spin order, in the CuO2 planes of YBa2Cu3Oy, and it is argued that it is most probably the same 4a-periodic modulation as in stripe-ordered copper oxides.
Abstract: Nuclear magnetic resonance measurements of the model high-temperature copper oxide superconductor YBa2Cu3Oy demonstrate that high magnetic fields induce charge order, without spin order, within the material's CuO2 planes. The observed charge order has characteristics similar to those of stripe-ordered copper oxides, in which electronic charges spontaneously organize themselves into 'stripes'. The charge order develops only when superconductivity fades away. This work suggests that stripes are more common objects in the cuprates than was thought. They seem to compete with superconductivity, although the tendency to form stripes may be a necessary ingredient of high temperature superconductivity. Electronic charges introduced in copper-oxide (CuO2) planes generate high-transition-temperature (Tc) superconductivity but, under special circumstances, they can also order into filaments called stripes1. Whether an underlying tendency towards charge order is present in all copper oxides and whether this has any relationship with superconductivity are, however, two highly controversial issues2,3. To uncover underlying electronic order, magnetic fields strong enough to destabilize superconductivity can be used. Such experiments, including quantum oscillations4,5,6 in YBa2Cu3Oy (an extremely clean copper oxide in which charge order has not until now been observed) have suggested that superconductivity competes with spin, rather than charge, order7,8,9. Here we report nuclear magnetic resonance measurements showing that high magnetic fields actually induce charge order, without spin order, in the CuO2 planes of YBa2Cu3Oy. The observed static, unidirectional, modulation of the charge density breaks translational symmetry, thus explaining quantum oscillation results, and we argue that it is most probably the same 4a-periodic modulation as in stripe-ordered copper oxides1. That it develops only when superconductivity fades away and near the same 1/8 hole doping as in La2−xBaxCuO4 (ref. 1) suggests that charge order, although visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic propensity of the superconducting planes of high-Tc copper oxides.

639 citations

Journal ArticleDOI
11 Oct 2002-Science
TL;DR: The observation of magnetic superstructure in a magnetization plateau state of SrCu2(BO3)2, a frustrated quasi–two-dimensional quantum spin system, and the crystallization of itinerant triplets in the plateau phase within a large rhomboid unit cell shows oscillations of the spin polarization.
Abstract: We report the observation of magnetic superstructure in a magnetization plateau state of SrCu2(BO3)2, a frustrated quasi–two-dimensional quantum spin system. The Cu and B nuclear magnetic resonance (NMR) spectra at 35 millikelvin indicate an apparently discontinuous phase transition from uniform magnetization to a modulated superstructure near 27 tesla, above which a magnetization plateau at 1/8 of the full saturation has been observed. Comparison of the Cu NMR spectrum and the theoretical analysis of a Heisenberg spin model demonstrates the crystallization of itinerant triplets in the plateau phase within a large rhomboid unit cell (16 spins per layer) showing oscillations of the spin polarization. Thus, we are now in possession of an interesting model system to study a localization transition of strongly interacting quantum particles.

240 citations

Journal ArticleDOI
TL;DR: It is shown that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density, and that this modulation impacts on most electronic properties, and it appears jointly with intra-unit-cell nematic, but not magnetic, order.
Abstract: The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.

230 citations

Journal ArticleDOI
TL;DR: It is shown using nuclear magnetic resonance that charge order in YBa2Cu3Oy has maximum strength inside the superconducting dome, similar to compounds of the La2-x(Sr,Ba)xCuO4 family, and that the overlap of halos of incipient charge order around vortex cores can explain the threshold magnetic field at which long-range charge order emerges.
Abstract: Evidence is mounting that charge order competes with superconductivity in high Tc cuprates. Whether this has any relationship to the pairing mechanism is unknown as neither the universality of the competition nor its microscopic nature has been established. Here, we show using nuclear magnetic resonance that charge order in YBa2Cu3Oy has maximum strength inside the superconducting dome, similar to compounds of the La2-x(Sr,Ba)xCuO4 family. In YBa2Cu3Oy, this occurs at doping levels of p=0.11-0.12. We further show that the overlap of halos of incipient charge order around vortex cores, similar to those visualised in Bi2Sr2CaCu2O8+δ, can explain the threshold magnetic field at which long-range charge order emerges. These results reveal universal features of a competition in which charge order and superconductivity appear as joint instabilities of the same normal state, whose relative balance can be field-tuned in the vortex state.

209 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Abstract: Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface. This Review details recent advances in battery chemistries and systems enabled by solid electrolytes, including all-solid-state lithium-ion, lithium–air, lithium–sulfur and lithium–bromine batteries, as well as an aqueous battery concept with a mediator-ion solid electrolyte.

2,749 citations

Journal ArticleDOI
12 Feb 2015-Nature
TL;DR: The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry but unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the ‘normal’ state at elevated temperatures.
Abstract: The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.

1,859 citations

Journal ArticleDOI
TL;DR: The pseudogap is seen in all high-temperature superconductors and there is general agreement on the temperature and doping range where it exists as discussed by the authors, and it is also becoming clear that the superconducting gap emerges from the normal state pseudogaps.
Abstract: We present an experimental review of the nature of the pseudogap in the cuprate superconductors. Evidence from various experimental techniques points to a common phenomenology. The pseudogap is seen in all high-temperature superconductors and there is general agreement on the temperature and doping range where it exists. It is also becoming clear that the superconducting gap emerges from the normal state pseudogap. The d-wave nature of the order parameter holds for both the superconducting gap and the pseudogap. Although an extensive body of evidence is reviewed, a consensus on the origin of the pseudogap is as lacking as it is for the mechanism underlying high-temperature superconductivity.

1,721 citations

01 Aug 1993
TL;DR: One-dimensional Bose-gas One-dimensional Heisenberg magnet Massive Thirring model Classical r-matrix Fundamentals of inverse scattering method Algebraic Bethe ansatz Quantum field theory integral models on a lattice Theory of scalar products Form factors Mean value of operator Q Assymptotics of correlation functions Temperature correlation functions Appendices References as discussed by the authors
Abstract: One-dimensional Bose-gas One-dimensional Heisenberg magnet Massive Thirring model Classical r-matrix Fundamentals of inverse scattering method Algebraic Bethe ansatz Quantum field theory integral models on a lattice Theory of scalar products Form factors Mean value of operator Q Assymptotics of correlation functions Temperature correlation functions Appendices References.

1,491 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a classification of anion exchange membranes for alkaline fuel cells, based on the nature and the properties of these membranes for both commercial and non-commercial applications.

1,431 citations