scispace - formally typeset
Search or ask a question
Author

Claude Monneret

Bio: Claude Monneret is an academic researcher from Curie Institute. The author has contributed to research in topics: Prodrug & Topoisomerase. The author has an hindex of 31, co-authored 240 publications receiving 4237 citations. Previous affiliations of Claude Monneret include Pasteur Institute & Centre national de la recherche scientifique.
Topics: Prodrug, Topoisomerase, Thymine, Adept, Etoposide


Papers
More filters
Journal ArticleDOI
Claude Monneret1
TL;DR: Design of a second generation ofHDACs was based upon data affording potent HDACs such as LAQ824 and PDX101 currently under phase I clinical trials, and two of them, MS-275 and CI-994, have reached phase II and I clinical Trials, respectively.

819 citations

Journal Article
TL;DR: Data suggest that HMR 1826 is a promising candidate for clinical development and strong antitumor effects also in cancers resistant to maximum tolerated doses of systemic doxorubicin.
Abstract: Elucidation of the mechanism enabling tumor selective PMT in vivo with appropriate glucuronyl-spacer-doxorubicin prodrugs, such as HMR 1826, is important for the design of clinical studies, as well as for the development of more selective drugs. Enzyme histochemistry, immunohistochemistry, and the terminal deoxytransferase technique were applied using human cryopreserved cancer tissues, normal human, monkey, and mouse tissues, and human tumor xenografts to examine mechanisms underlying the selectivity of successful PMT with HMR 1826. It could unambiguously be shown by enzyme histochemistry that necrotic areas in human cancers are the sites in which lysosomal beta-glucuronidase is liberated extracellularly in high local concentrations. The cells responsible for the liberation of the enzyme are mainly acute and chronic inflammatory cells, as shown by IHC. Furthermore, it could be demonstrated that beta-glucuronidase liberated in necrotic areas of tumors can activate HMR 1826, resulting in increased doxorubicin deposition in human tumor xenografts or in human lung cancers subjected to extracorporal perfusion, compared to chemotherapy with doxorubicin. Additionally, the doxorubicin load to normal tissues was significantly reduced compared to chemotherapy with doxorubicin. Surprisingly, the increased doxorubicin deposition in tumors also resulted in strong antitumor effects also in cancers resistant to maximum tolerated doses of systemic doxorubicin. Finally, toxicity studies in mice and monkeys revealed an excellent tolerability of HMR 1826, up to a dose of 3 g/m2 (monkeys). These data suggest that HMR 1826 is a promising candidate for clinical development.

250 citations

Journal ArticleDOI
Claude Monneret1
TL;DR: Diethylstilbestrol a non-steroidal estrogen, which is regarded as a proof of concept, induces clear cell carcinoma among young women, and concerning the mechanisms of action of EDCs, many questions remain unanswered and need further investigations.

168 citations

Journal ArticleDOI
TL;DR: A survey of the discovery of etoposide, the DNA topoisomerase II structure and mechanism, and the models for drug-enzyme interaction is surveyed, concerned with the search for new etopOSide analogs based upon an empirical design.
Abstract: Etoposide is an antitumor agent currently in clinical use for the treatment of small cell lung cancer, testicular cancer and lymphomas. Since the introduction of etoposide in 1971, its mechanism of action and potent antineoplastic activity has served as the impetus for intensive research activities in chemistry and biology. This drug acts by stabilizing a normally transient DNA-topoisomerase II complex, thus increasing the concentration of double-stranded DNA breaks. This phenomenon triggers mutagenic and cell death pathways. The function of topoisomerase II is understood in some detail, as is the mechanism of inhibition of etoposide at a molecular level. Etoposide has shortcomings of limited neoplastic activity against several solid tumors such as non-small cell lung cancer, cross-resistance to MDR tumor cell lines and low bioavailability. The design and synthesis of etoposide analogs is an activity of fundamental interest to the field of cancer chemotherapy. In the first part, this article is a survey of the discovery of etoposide, the DNA topoisomerase II structure and mechanism, and the models for drug-enzyme interaction. The last part is concerned with the search for new etoposide analogs based upon an empirical design.

157 citations

Journal ArticleDOI
Claude Monneret1
TL;DR: A critical evaluation of anthracycline antibiotics' mechanism of action has recently been proposed, according to which these multiple mechanisms may be in fact related to the utilisation of drug concentration under varied experimental conditions.

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: An overview of issues confirms that anthracyclines remain “evergreen” drugs with broad clinical indications but have still an improvable therapeutic index.
Abstract: The clinical use of anthracyclines like doxorubicin and daunorubicin can be viewed as a sort of double-edged sword. On the one hand, anthracyclines play an undisputed key role in the treatment of many neoplastic diseases; on the other hand, chronic administration of anthracyclines induces cardiomyopathy and congestive heart failure usually refractory to common medications. Second-generation analogs like epirubicin or idarubicin exhibit improvements in their therapeutic index, but the risk of inducing cardiomyopathy is not abated. It is because of their janus behavior (activity in tumors vis-a-vis toxicity in cardiomyocytes) that anthracyclines continue to attract the interest of preclinical and clinical investigations despite their longer-than-40-year record of longevity. Here we review recent progresses that may serve as a framework for reappraising the activity and toxicity of anthracyclines on basic and clinical pharmacology grounds. We review 1) new aspects of anthracycline-induced DNA damage in cancer cells; 2) the role of iron and free radicals as causative factors of apoptosis or other forms of cardiac damage; 3) molecular mechanisms of cardiotoxic synergism between anthracyclines and other anticancer agents; 4) the pharmacologic rationale and clinical recommendations for using cardioprotectants while not interfering with tumor response; 5) the development of tumor-targeted anthracycline formulations; and 6) the designing of third-generation analogs and their assessment in preclinical or clinical settings. An overview of these issues confirms that anthracyclines remain "evergreen" drugs with broad clinical indications but have still an improvable therapeutic index.

3,320 citations

Journal ArticleDOI
TL;DR: The in vivo fate of these systems, after intravascular or tumoral administration, is discussed, as well as the mechanism involved in tumor regression, and the application of nanoparticles in imaging for cancer diagnosis is focused on.

3,164 citations

Journal ArticleDOI
TL;DR: Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells.

2,424 citations

Journal ArticleDOI
TL;DR: Investigating aspects of HDACi action both in vitro and in vivo will further improve the design of optimized clinical protocols and help to understand the role of histone deacetylases in tumorigenesis.
Abstract: Histone deacetylases (HDACs) are considered to be among the most promising targets in drug development for cancer therapy, and first-generation histone deacetylase inhibitors (HDACi) are currently being tested in phase I/II clinical trials. A wide-ranging knowledge of the role of HDACs in tumorigenesis, and of the action of HDACi, has been achieved. However, several basic aspects are not yet fully understood. Investigating these aspects in the context of what we now understand about HDACi action both in vitro and in vivo will further improve the design of optimized clinical protocols.

2,110 citations