scispace - formally typeset
Search or ask a question
Author

Claudete Aparecida Mangolin

Other affiliations: State University of Campinas
Bio: Claudete Aparecida Mangolin is an academic researcher from Universidade Estadual de Maringá. The author has contributed to research in topics: Genetic diversity & Genetic variability. The author has an hindex of 19, co-authored 99 publications receiving 1251 citations. Previous affiliations of Claudete Aparecida Mangolin include State University of Campinas.


Papers
More filters
Journal ArticleDOI
TL;DR: Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL.
Abstract: A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.

102 citations

Journal ArticleDOI
TL;DR: Results suggest that ferulic acid may be channeled into the phenylpropanoid pathway (by the 4CL reaction) and, further, may increase the lignin monomer amount solidifying the cell wall and restricting the root growth.
Abstract: Ferulic acid, in the form of feruloyl CoA, occupies a central position as an intermediate in the phenylpropanoid pathway. Due to the allelopathic function, its effects were tested on root growth, H2O2 and lignin contents, and activities of cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) and peroxidase (POD, EC 1.11.1.7) from soybean (Glycine max (L.) Merr.) root seedlings. Three-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 1.0 mM ferulic acid in a growth chamber (25°C, 12/12 hr light/dark photoperiod, irradiance of 280 μmol m−2 s−1) for 24 or 48 hr. Exogenously supplied ferulic acid induced premature cessation of root growth, with disintegration of the root cap, compression of cells in the quiescent center, increase of the vascular cylinder diameter, and earlier lignification of the metaxylem. Moreover, the allelochemical decreased CAD activity and H2O2 level and increased the anionic isoform PODa5 activity and lignin content. The lignin monomer composition of ferulic acid-exposed roots revealed a significant increase of guaiacyl (G) units. When applied jointly with piperonylic acid (an inhibitor of the cinnamate 4-hydroxylase, C4H), ferulic acid increased lignin content. By contrast, the application of 3,4-(methylenedioxy) cinnamic acid (an inhibitor of the 4-coumarate:CoA ligase, 4CL) with ferulic acid did not. Taken together, these results suggest that ferulic acid may be channeled into the phenylpropanoid pathway (by the 4CL reaction) and, further, may increase the lignin monomer amount solidifying the cell wall and restricting the root growth.

97 citations

Journal ArticleDOI
TL;DR: The results suggest that RFLP-based GDs are efficient and reliable to assess and allocate genotypes from tropical maize populations into heterotic groups, but are not suitable for predicting the performance of line crosses from genetically differentheterotic groups.
Abstract: Tropical maize inbred lines, eight derived from a Thai synthetic population (BR-105) and 10 from a Brazilian composite population (BR-106), were assayed for restriction fragment length polymorphisms with 185 clone-enzyme combinations. The aim of this study was to investigate genetic distances among tropical maize material and their relationship to heterotic group allocation and hybrid performance. Genetic distances (GDs) were on average greater for BR-105 x BR-106 lines (0.77) than for BR-106 × BR-106 (0.71) and for BR-105 × BR-105 (0.69) lines. Cluster analysis resulted in a clear separation of BR-105 and BR-106 populations and was according to pedigree information. Correlations of parental GDs with single crosses and their heterosis for grain yield were high for line crosses from the same heterotic group and low for line combinations from different heterotic groups. Our results suggest that RFLP-based GDs are efficient and reliable to assess and allocate genotypes from tropical maize populations into heterotic groups. However. RFLP-based GDs are not suitable for predicting the performance of line crosses from genetically different heterotic groups.

92 citations

Journal ArticleDOI
TL;DR: Correlation between genetic distances obtained through RAPD and SSR markers was relatively high, indicating that both techniques are efficient for evaluating genetic diversity in the genotypes of popcorn that the authors evaluated, though RAPDs yielded more polymorphisms.
Abstract: Using only one type of marker to quantify genetic diversity generates results that have been questioned in terms of reliability, when compared to the combined use of different markers. To compare the efficiency of the use of single versus multiple markers, we quantified genetic diversity among 10 S(7) inbred popcorn lines using both RAPD and SSR markers, and we evaluated how well these two types of markers discriminated the popcorn genotypes. These popcorn genotypes: "Yellow Pearl Popcorn" (P1-1 and P1-5), "Zelia" (P1-2 and P1-4), "Curagua" (P1-3), "IAC 112" (P9-1 and P9-2), "Avati Pichinga" (P9-3 and P9-5), and "Pisankalla" (P9-4) have different soil and climate adaptations. Using RAPD marker analysis, each primer yielded bands of variable intensities that were easily detected, as well as non-specific bands, which were discarded from the analysis. The nine primers used yielded 126 bands, of which 104 were classified as polymorphic, giving an average of 11.6 polymorphisms per primer. Using SSR procedures, the number of alleles per locus ranged from two to five, giving a total of 47 alleles for the 14 SSR loci. When comparing the groups formed using SSR and RAPD markers, there were similarities in the combinations of genotypes from the same genealogy. Correlation between genetic distances obtained through RAPD and SSR markers was relatively high (0.5453), indicating that both techniques are efficient for evaluating genetic diversity in the genotypes of popcorn that we evaluated, though RAPDs yielded more polymorphisms.

74 citations

Journal ArticleDOI
TL;DR: To map quantitative trait locus (QTLs) and estimate their effects for kernel oil content in a tropical maize population, a genetic map with 75 microsatellites was developed and the QTLs were mapped using the composite interval map (CIM).
Abstract: Maize cultivars often have low kernel oil content. To increase the oil content, efficient maize breeding programs have to be developed, which require the knowledge of the inheritance of this trait. Thus, the objective of this research was to map quantitative trait locus (QTLs) and estimate their effects for kernel oil content in a tropical maize population. Two maize inbred lines, contrasting for kernel oil content, were used to develop an F2 population. Four hundred and eight F2 plants were self-pollinated, and their kernels (F2:3 progenies) were used for kernel oil evaluation. A genetic map with 75 microsatellites was developed, and the QTLs were mapped using the composite interval map (CIM); also, estimates of genetic and phenotypic variances, and heritability coefficient were computed. The map presented 10 linkage groups, spanned 1,438.6 cM in length with an average interval of 19.18 cM between adjacent markers. The kernel oil content averaged 58.40 g kg−1, and the broad-sense heritability was high (h2= 0.98). Thirteen QTLs were mapped, which were distributed into eight chromosomes, and explained 26.64% of the genetic variation. QTLs in chromosomes 1, 5, and 6 contributed the most for kernel oil content. Nine out of 13 QTLs with favorable alleles were from the parental inbred with the highest kernel oil content. The average level of dominance was partial, but gene action of the QTLs ranged from additive to overdominance. Eight out of 13 mapped QTLs were already reported for temperate maize populations.

60 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: Fundamental issues remain to be resolved, particularly regarding complex traits, before marker-assisted selection realizes its full potential in public sector breeding programs, including the development of high throughput precision phenotyping systems for QTL mapping, improved understanding of genotype by environment interaction and epistasis, and development of publicly available computational tools tailored to the needs of molecular breeding programs.
Abstract: The volume of publications on the development and to a lesser extent the application of molecular markers in plant breeding has increased dramatically during the last decade. However, most of the publications result from investments from donors with a strategic science quality or biotech advocacy mandate leading to insufficient emphasis on applied value in plant breeding. Converting promising publications into practical applications requires the resolution of many logistical and genetical constraints that are rarely addressed in journal publications. This results in a high proportion of published markers failing at one or more of the translation steps from research arena to application domain. The rate of success is likely to increase due to developments in gene-based marker development, more efficient quantitative trait locus (QTL) mapping procedures, and lower cost genotyping systems. However, some fundamental issues remain to be resolved, particularly regarding complex traits, before marker-assisted selection realizes its full potential in public sector breeding programs. These include the development of high throughput precision phenotyping systems for QTL mapping, improved understanding of genotype by environment interaction and epistasis, and development of publicly available computational tools tailored to the needs of molecular breeding programs.

809 citations

31 Jan 1983
TL;DR: This research developed a measure of precision for H for certain balanced linear models for heritability on a progeny mean basis for sorghum half-sib family data.
Abstract: Heritability (H) on a progeny mean basis is frequently estimated in recurrent selection experiments for the purpose of estimating the expected progress from family selection; however, appropriate measures of precision have been developed for only a few heritability estimators. The objective of this research was to develop a measure of precision for H for certain balanced linear models. Exact confidence intervals for H were derived and are not restricted to a specific experimental design. The confidence intervals were applied to sorghum [Sorghum bicolor (L.) Moench] half-sib family data.

759 citations