scispace - formally typeset
Search or ask a question
Author

Cláudia Baider

Bio: Cláudia Baider is an academic researcher from University of São Paulo. The author has contributed to research in topics: Threatened species & IUCN Red List. The author has an hindex of 26, co-authored 68 publications receiving 3308 citations.


Papers
More filters
Journal ArticleDOI
Hans ter Steege1, Hans ter Steege2, Nigel C. A. Pitman3, Daniel Sabatier4, Christopher Baraloto5, Rafael de Paiva Salomão6, Juan Ernesto Guevara7, Oliver L. Phillips8, Carolina V. Castilho9, William E. Magnusson10, Jean-François Molino4, Abel Monteagudo, Percy Núñez Vargas11, Juan Carlos Montero10, Ted R. Feldpausch8, Ted R. Feldpausch12, Eurídice N. Honorio Coronado8, Timothy J. Killeen13, Bonifacio Mostacedo14, Rodolfo Vasquez, Rafael L. Assis10, Rafael L. Assis15, John Terborgh3, Florian Wittmann16, Ana Andrade10, William F. Laurance17, Susan G. Laurance17, Beatriz Schwantes Marimon18, Ben Hur Marimon18, Ima Célia Guimarães Vieira6, Iêda Leão do Amaral10, Roel J. W. Brienen8, Hernán Castellanos, Dairon Cárdenas López, Joost F. Duivenvoorden19, Hugo Mogollón20, Francisca Dionízia de Almeida Matos10, Nállarett Dávila21, Roosevelt García-Villacorta22, Pablo Roberto Stevenson Diaz23, Flávia R. C. Costa10, Thaise Emilio10, Carolina Levis10, Juliana Schietti10, Priscila Souza10, Alfonso Alonso24, Francisco Dallmeier24, Álvaro Javier Duque Montoya25, Maria Teresa Fernandez Piedade10, Alejandro Araujo-Murakami, Luzmila Arroyo, Rogério Gribel, Paul V. A. Fine7, Carlos A. Peres26, Marisol Toledo14, A C Gerardo Aymard, Timothy R. Baker8, Carlos Cerón27, Julien Engel28, Terry W. Henkel29, Paul J. M. Maas2, Pascal Petronelli, Juliana Stropp, Charles E. Zartman10, Doug Daly30, David A. Neill, Marcos Silveira31, Marcos Ríos Paredes, Jérôme Chave32, Diogenes de Andrade Lima Filho10, Peter M. Jørgensen33, Alfredo F. Fuentes33, Jochen Schöngart16, Fernando Cornejo Valverde34, Anthony Di Fiore35, E. M. Jimenez25, Maria Cristina Peñuela Mora25, Juan Fernando Phillips, Gonzalo Rivas36, Tinde van Andel2, Patricio von Hildebrand, Bruce Hoffman2, Egleé L. Zent37, Yadvinder Malhi38, Adriana Prieto25, Agustín Rudas25, Ademir R. Ruschell9, Natalino Silva39, Vincent A. Vos, Stanford Zent37, Alexandre Adalardo de Oliveira40, Angela Cano Schutz23, Therany Gonzales34, Marcelo Trindade Nascimento41, Hirma Ramírez-Angulo23, Rodrigo Sierra, Milton Tirado, Maria Natalia Umaña Medina23, Geertje M. F. van der Heijden42, Geertje M. F. van der Heijden43, César I.A. Vela11, Emilio Vilanova Torre23, Corine Vriesendorp, Ophelia Wang44, Kenneth R. Young35, Cláudia Baider40, Henrik Balslev45, Cid Ferreira10, Italo Mesones7, Armando Torres-Lezama23, Ligia Estela Urrego Giraldo25, Roderick Zagt46, Miguel Alexiades47, Lionel Hernández, Isau Huamantupa-Chuquimaco, William Milliken48, Walter Palacios Cuenca, Daniela Pauletto, Elvis H. Valderrama Sandoval49, Elvis H. Valderrama Sandoval50, Luis Valenzuela Gamarra, Kyle G. Dexter22, Kenneth J. Feeley51, Kenneth J. Feeley52, Gabriela Lopez-Gonzalez8, Miles R. Silman53 
Utrecht University1, Naturalis2, Duke University3, Institut de recherche pour le développement4, Institut national de la recherche agronomique5, Museu Paraense Emílio Goeldi6, University of California, Berkeley7, University of Leeds8, Empresa Brasileira de Pesquisa Agropecuária9, National Institute of Amazonian Research10, National University of Saint Anthony the Abbot in Cuzco11, University of Exeter12, World Wide Fund for Nature13, Universidad Autónoma Gabriel René Moreno14, Norwegian University of Life Sciences15, Max Planck Society16, James Cook University17, Universidade do Estado de Mato Grosso18, University of Amsterdam19, Silver Spring Networks20, State University of Campinas21, University of Edinburgh22, University of Los Andes23, Smithsonian Conservation Biology Institute24, National University of Colombia25, University of East Anglia26, Central University of Ecuador27, Centre national de la recherche scientifique28, Humboldt State University29, New York Botanical Garden30, Universidade Federal do Acre31, Paul Sabatier University32, Missouri Botanical Garden33, Amazon.com34, University of Texas at Austin35, University of Florida36, Venezuelan Institute for Scientific Research37, Environmental Change Institute38, Federal Rural University of Amazonia39, University of São Paulo40, State University of Norte Fluminense41, University of Wisconsin–Milwaukee42, Smithsonian Tropical Research Institute43, Northern Arizona University44, Aarhus University45, Tropenbos International46, University of Kent47, Royal Botanic Gardens48, Universidad Nacional de la Amazonía Peruana49, University of Missouri–St. Louis50, Florida International University51, Fairchild Tropical Botanic Garden52, Wake Forest University53
18 Oct 2013-Science
TL;DR: The finding that Amazonia is dominated by just 227 tree species implies that most biogeochemical cycling in the world’s largest tropical forest is performed by a tiny sliver of its diversity.
Abstract: The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species—less diverse than the North American tree flora—accounts for half of the world’s most diverse tree community.

963 citations

Journal ArticleDOI
03 Mar 2017-Science
TL;DR: Analysis of plant distributions, archaeological sites, and environmental data indicates that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.
Abstract: The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.

398 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first comprehensive spatial model of tree α-diversity and tree density in Amazonian rainforests, based on the largest-yet compilation of forest inventories and bolstered by a spatial interpolation technique that allows them to estimate diversity and density in areas that have never been inventoried.
Abstract: Large-scale patterns of Amazonian biodiversity have until now been obscured by a sparse and scattered inventory record. Here we present the first comprehensive spatial model of tree α-diversity and tree density in Amazonian rainforests, based on the largest-yet compilation of forest inventories and bolstered by a spatial interpolation technique that allows us to estimate diversity and density in areas that have never been inventoried. These data were then compared to continent-wide patterns of rainfall seasonality. We find that dry season length, while only weakly correlated with average tree α-diversity, is a strong predictor of tree density and of maximum tree α-diversity. The most diverse forests for any given DSL are concentrated in a narrow latitudinal band just south of the equator, while the least diverse forests for any given DSL are found in the Guayana Shield and Amazonian Bolivia. Denser forests are more diverse than sparser forests, even when we used a measure of diversity that corrects for sample size. We propose that rainfall seasonality regulates tree α-diversity and tree density by affecting shade tolerance and subsequently the number of different functional types of trees that can persist in an area.

388 citations

Journal ArticleDOI
19 Dec 2003-Science
TL;DR: Without management, intensively harvested populations will succumb to a process of senescence and demographic collapse, threatening this cornerstone of the Amazonian extractive economy.
Abstract: A comparative analysis of 23 populations of the Brazil nut tree (Bertholletia excelsa) across the Brazilian, Peruvian, and Bolivian Amazon shows that the history and intensity of Brazil nut exploitation are major determinants of population size structure. Populations subjected to persistent levels of harvest lack juvenile trees less than 60 centimeters in diameter at breast height; only populations with a history of either light or recent exploitation contain large numbers of juvenile trees. A harvesting model confirms that intensive exploitation levels over the past century are such that juvenile recruitment is insufficient to maintain populations over the long term. Without management, intensively harvested populations will succumb to a process of senescence and demographic collapse, threatening this cornerstone of the Amazonian extractive economy.

304 citations

Journal ArticleDOI
TL;DR: This study presents data on the population density, spatial distribution, and seed dispersal ecology of Brazilnut trees at a pristine stand located within the Kayap6 Indian Area of southeastern Amazonia, Para, Brazil and suggests that, once edaphic and climatic conditions are suitable, the highly contagious spatial distiibution of Bertholletia trees at the landscape level can be largely affected by the quantitatively domiinant effect of short-distance dispersal by caviomorph rodents
Abstract: Seeds of the Brazilnut tIee (Bertholletia excelsa Humb. & Bonpl., Lecythidaceae) sus- tain one of the imiost important extractive industries in neotropical foiests. Yet little is known about the demogiaphy aind seed dispersal ecology of Bertholletia, particularly in natural stands which have inot been prevriously hai-rested. This study presents data on the population density, spatial distribution, aind seed dispersal ecology of Brazilnut trees at a pristine stand located within the Kayap6 Indian Area of southeastern Amazonia, Para, Brazil. Brazilnut trees were primarily found within groves (castaizhais) of 75 to 149 trees, with a few isolated trees in between. Although the density of trees 10 cm in diameter at breast height (hereafter, dbh) at two groves was 4.8 to 5.1 trees ha-', the overall deinsity for the entire study area of c. 950 ha was estimated at 1.3 tree ha-'. Within-gi-ove neaiest ineighbour distances averaged 21 m and weie markedly skewed towaids even shorter distances. Seed dispersal experiments uising 709 maikedl seeds indlicated that this pattern can be largely explained by the highly restricted seed shadows imparted by the main seed dispersal agents of Bertholletia at this site, the red-rumped agouti (Dasyprocta leporina). Agoutis on average scatterhoard Bertholletia seeds to an average distaince of 5 m, and rarely beyond 20 m, from seed stations. We suggest that, once edaphic and climatic conditions aie suitable, the highly contagious spatial distiibution of Ber-tholletia trees at the landscape level can be largely accouinted foi by the quantitatively domiinant effect of short-distance dispersal by caviomorph rodents, and rare events of long-distance dispersal provided by other vectors. This mechanism of grove forma- tion need not resort to untested conjectures of human dispersal and intentional planting in prehis- toric and historic times as it has often been suggested in the literature.

187 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in this study.
Abstract: For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.

4,376 citations

Journal ArticleDOI
30 May 2014-Science
TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Abstract: Background A principal function of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is to “perform regular and timely assessments of knowledge on biodiversity.” In December 2013, its second plenary session approved a program to begin a global assessment in 2015. The Convention on Biological Diversity (CBD) and five other biodiversity-related conventions have adopted IPBES as their science-policy interface, so these assessments will be important in evaluating progress toward the CBD’s Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. As a contribution toward such assessment, we review the biodiversity of eukaryote species and their extinction rates, distributions, and protection. We document what we know, how it likely differs from what we do not, and how these differences affect biodiversity statistics. Interestingly, several targets explicitly mention “known species”—a strong, if implicit, statement of incomplete knowledge. We start by asking how many species are known and how many remain undescribed. We then consider by how much human actions inflate extinction rates. Much depends on where species are, because different biomes contain different numbers of species of different susceptibilities. Biomes also suffer different levels of damage and have unequal levels of protection. How extinction rates will change depends on how and where threats expand and whether greater protection counters them. Different visualizations of species biodiversity. ( A ) The distributions of 9927 bird species. ( B ) The 4964 species with smaller than the median geographical range size. ( C ) The 1308 species assessed as threatened with a high risk of extinction by BirdLife International for the Red List of Threatened Species of the International Union for Conservation of Nature. ( D ) The 1080 threatened species with less than the median range size. (D) provides a strong geographical focus on where local conservation actions can have the greatest global impact. Additional biodiversity maps are available at www.biodiversitymapping.org. Advances Recent studies have clarified where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. These data are increasingly accessible, bringing greater transparency to science and governance. Taxonomic catalogs of plants, terrestrial vertebrates, freshwater fish, and some marine taxa are sufficient to assess their status and the limitations of our knowledge. Most species are undescribed, however. The species we know best have large geographical ranges and are often common within them. Most known species have small ranges, however, and such species are typically newer discoveries. The numbers of known species with very small ranges are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. We expect unknown species to share these characteristics. Current rates of extinction are about 1000 times the background rate of extinction. These are higher than previously estimated and likely still underestimated. Future rates will depend on many factors and are poised to increase. Finally, although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Outlook Progress on assessing biodiversity will emerge from continued expansion of the many recently created online databases, combining them with new global data sources on changing land and ocean use and with increasingly crowdsourced data on species’ distributions. Examples of practical conservation that follow from using combined data in Colombia and Brazil can be found at www.savingspecies.org and www.youtube.com/watch?v=R3zjeJW2NVk.

2,360 citations

Journal ArticleDOI
TL;DR: The population extinction pulse shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions and humanity needs to address anthropogenic population extirpation and decimation immediately.
Abstract: The population extinction pulse we describe here shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions. Therefore, humanity needs to address anthropogenic population extirpation and decimation immediately. That conclusion is based on analyses of the numbers and degrees of range contraction (indicative of population shrinkage and/or population extinctions according to the International Union for Conservation of Nature) using a sample of 27,600 vertebrate species, and on a more detailed analysis documenting the population extinctions between 1900 and 2015 in 177 mammal species. We find that the rate of population loss in terrestrial vertebrates is extremely high—even in “species of low concern.” In our sample, comprising nearly half of known vertebrate species, 32% (8,851/27,600) are decreasing; that is, they have decreased in population size and range. In the 177 mammals for which we have detailed data, all have lost 30% or more of their geographic ranges and more than 40% of the species have experienced severe population declines (>80% range shrinkage). Our data indicate that beyond global species extinctions Earth is experiencing a huge episode of population declines and extirpations, which will have negative cascading consequences on ecosystem functioning and services vital to sustaining civilization. We describe this as a “biological annihilation” to highlight the current magnitude of Earth’s ongoing sixth major extinction event.

1,580 citations

Journal ArticleDOI
Colomban de Vargas1, Colomban de Vargas2, Stéphane Audic1, Stéphane Audic2, Nicolas Henry1, Nicolas Henry2, Johan Decelle1, Johan Decelle2, Frédéric Mahé2, Frédéric Mahé1, Frédéric Mahé3, Ramiro Logares4, Enrique Lara, Cédric Berney1, Cédric Berney2, Noan Le Bescot2, Noan Le Bescot1, Ian Probert2, Ian Probert1, Margaux Carmichael1, Margaux Carmichael5, Margaux Carmichael2, Julie Poulain6, Sarah Romac2, Sarah Romac1, Sébastien Colin2, Sébastien Colin1, Sébastien Colin5, Jean-Marc Aury6, Lucie Bittner, Samuel Chaffron7, Samuel Chaffron8, Micah Dunthorn3, Stefan Engelen6, Olga Flegontova9, Olga Flegontova10, Lionel Guidi1, Lionel Guidi2, Aleš Horák9, Aleš Horák10, Olivier Jaillon6, Olivier Jaillon1, Olivier Jaillon11, Gipsi Lima-Mendez7, Gipsi Lima-Mendez8, Julius Lukeš9, Julius Lukeš10, Julius Lukeš12, Shruti Malviya5, Raphael Morard2, Raphael Morard13, Raphael Morard1, Matthieu Mulot, Eleonora Scalco14, Raffaele Siano15, Flora Vincent5, Flora Vincent8, Adriana Zingone14, Céline Dimier5, Céline Dimier2, Céline Dimier1, Marc Picheral1, Marc Picheral2, Sarah Searson2, Sarah Searson1, Stefanie Kandels-Lewis16, Tara Oceans Coordinators17, Silvia G. Acinas4, Peer Bork18, Peer Bork16, Chris Bowler5, Gabriel Gorsky2, Gabriel Gorsky1, Nigel Grimsley19, Nigel Grimsley1, Pascal Hingamp20, Daniele Iudicone14, Fabrice Not1, Fabrice Not2, Hiroyuki Ogata17, Stephane Pesant13, Jeroen Raes8, Jeroen Raes7, Michael E. Sieracki21, Michael E. Sieracki22, Sabrina Speich5, Sabrina Speich23, Lars Stemmann2, Lars Stemmann1, Shinichi Sunagawa16, Jean Weissenbach11, Jean Weissenbach6, Jean Weissenbach1, Patrick Wincker1, Patrick Wincker6, Patrick Wincker11, Eric Karsenti5, Eric Karsenti16 
22 May 2015-Science
TL;DR: Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies.
Abstract: Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.

1,378 citations