scispace - formally typeset
Search or ask a question
Author

Claudia Pappas

Bio: Claudia Pappas is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Virus & Influenza A virus. The author has an hindex of 16, co-authored 20 publications receiving 4820 citations. Previous affiliations of Claudia Pappas include National Center for Immunization and Respiratory Diseases & Icahn School of Medicine at Mount Sinai.

Papers
More filters
Journal ArticleDOI
10 Jul 2009-Science
TL;DR: The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period as mentioned in this paper.
Abstract: Since its identification in April 2009, an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Its low genetic diversity suggests that the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predictive of adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting that previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).

2,393 citations

Journal ArticleDOI
24 Jul 2009-Science
TL;DR: In this paper, selected 2009 A(H1N1) influenza isolates were assessed for their ability to cause disease in mice and ferrets and compared with a contemporary seasonal H 1N1 virus for the ability to transmit to naive ferrets through respiratory droplets.
Abstract: Recent reports of mild to severe influenza-like illness in humans caused by a novel swine-origin 2009 A(H1N1) influenza virus underscore the need to better understand the pathogenesis and transmission of these viruses in mammals. In this study, selected 2009 A(H1N1) influenza isolates were assessed for their ability to cause disease in mice and ferrets and compared with a contemporary seasonal H1N1 virus for their ability to transmit to naive ferrets through respiratory droplets. In contrast to seasonal influenza H1N1 virus, 2009 A(H1N1) influenza viruses caused increased morbidity, replicated to higher titers in lung tissue, and were recovered from the intestinal tract of intranasally inoculated ferrets. The 2009 A(H1N1) influenza viruses exhibited less efficient respiratory droplet transmission in ferrets in comparison with the highly transmissible phenotype of a seasonal H1N1 virus. Transmission of the 2009 A(H1N1) influenza viruses was further corroborated by characterizing the binding specificity of the viral hemagglutinin to the sialylated glycan receptors (in the human host) by use of dose-dependent direct receptor-binding and human lung tissue-binding assays.

642 citations

Journal ArticleDOI
02 Feb 2007-Science
TL;DR: These findings confirm an essential role of hemagglutinin receptor specificity for the transmission of influenza viruses among mammals and suggest that a predominant human α-2,6 sialic acid binding preference is essential for optimal transmission of this pandemic virus.
Abstract: The 1918 influenza pandemic was a catastrophic series of virus outbreaks that spread across the globe. Here, we show that only a modest change in the 1918 influenza hemagglutinin receptor binding site alters the transmissibility of this pandemic virus. Two amino acid mutations that cause a switch in receptor binding preference from the human α-2,6 to the avian α-2,3 sialic acid resulted in a virus incapable of respiratory droplet transmission between ferrets but that maintained its lethality and replication efficiency in the upper respiratory tract. Furthermore, poor transmission of a 1918 virus with dual α-2,6 and α-2,3 specificity suggests that a predominant human α-2,6 sialic acid binding preference is essential for optimal transmission of this pandemic virus. These findings confirm an essential role of hemagglutinin receptor specificity for the transmission of influenza viruses among mammals.

545 citations

Journal ArticleDOI
25 Sep 2008-Nature
TL;DR: It is demonstrated that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure—well into the tenth decade of life.
Abstract: Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth decade of life.

430 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the adaptation of the HA and PB2 proteins are critical for the development of pandemic influenza strains from avian influenza viruses.
Abstract: The influenza virus genes that confer efficient transmission of epidemic and pandemic strains in humans have not been identified. The rapid spread and severe disease caused by the 1918 influenza pandemic virus makes it an ideal virus to study the transmissibility of potentially pandemic influenza strains. Here, we used a series of human 1918-avian H1N1 influenza reassortant viruses to identify the genetic determinants that govern airborne transmission of avian influenza viruses. We have demonstrated that the 1918 HA gene was necessary for efficient direct contact transmission, but did not allow respiratory droplet transmission between ferrets of an avian influenza virus possessing an avian polymerase subunit PB2. The 1918 PB2 protein was found to be both necessary and sufficient for airborne transmission of a virus expressing the 1918 HA and neuraminidase. Also, it was found that influenza viruses that were able to transmit efficiently in ferrets were able to replicate efficiently at the lower temperature (33 °C) found in the environment of mammalian airway. These findings demonstrate that the adaptation of the HA and PB2 proteins are critical for the development of pandemic influenza strains from avian influenza viruses.

218 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Wild aquatic bird populations have long been considered the natural reservoir for influenza A viruses with virus transmission from these birds seeding other avian and mammalian hosts, but recent studies in bats have suggested other reservoir species may also exist.

4,155 citations

Journal ArticleDOI
25 Jun 2009-Nature
TL;DR: It is shown that the new swine-origin influenza A (H1N1) virus emerged in Mexico and the United States was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak.
Abstract: In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.

2,023 citations

Journal ArticleDOI
05 Feb 2021-Science
TL;DR: This article analyzed multiple compartments of circulating immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months after infection.
Abstract: Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.

1,980 citations

Journal Article
TL;DR: This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices regarding the use of influenza vaccine for the prevention and control of seasonal influenza and includes a summary of safety data for U.S. licensed influenza vaccines.
Abstract: This report updates the 2009 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2009;58[No. RR-8] and CDC. Use of influenza A (H1N1) 2009 monovalent vaccine---recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58:[No. RR-10]). The 2010 influenza recommendations include new and updated information. Highlights of the 2010 recommendations include 1) a recommendation that annual vaccination be administered to all persons aged >or=6 months for the 2010-11 influenza season; 2) a recommendation that children aged 6 months--8 years whose vaccination status is unknown or who have never received seasonal influenza vaccine before (or who received seasonal vaccine for the first time in 2009-10 but received only 1 dose in their first year of vaccination) as well as children who did not receive at least 1 dose of an influenza A (H1N1) 2009 monovalent vaccine regardless of previous influenza vaccine history should receive 2 doses of a 2010-11 seasonal influenza vaccine (minimum interval: 4 weeks) during the 2010--11 season; 3) a recommendation that vaccines containing the 2010-11 trivalent vaccine virus strains A/California/7/2009 (H1N1)-like (the same strain as was used for 2009 H1N1 monovalent vaccines), A/Perth/16/2009 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; 4) information about Fluzone High-Dose, a newly approved vaccine for persons aged >or=65 years; and 5) information about other standard-dose newly approved influenza vaccines and previously approved vaccines with expanded age indications. Vaccination efforts should begin as soon as the 2010-11 seasonal influenza vaccine is available and continue through the influenza season. These recommendations also include a summary of safety data for U.S.-licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2010-11 influenza season also will be available at this website. Recommendations for influenza diagnosis and antiviral use will be published before the start of the 2010-11 influenza season. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.

1,659 citations