scispace - formally typeset
Search or ask a question
Author

Claudia Roldo

Bio: Claudia Roldo is an academic researcher from Ohio State University. The author has contributed to research in topics: microRNA & Gene expression profiling. The author has an hindex of 4, co-authored 4 publications receiving 8832 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
Abstract: Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155 The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 00001) A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes

5,791 citations

Journal ArticleDOI
TL;DR: A unique microRNA signature is associated with prognostic factors and disease progression in CLL, and a germ-line mutation in the miR-16-1-miR-15a primary precursor caused low levels of microRNA expression in vitro and in vivo and was associated with deletion of the normal allele.
Abstract: Background MicroRNA expression profiles can be used to distinguish normal B cells from malignant B cells in patients with chronic lymphocytic leukemia (CLL). We investigated whether microRNA profiles are associated with known prognostic factors in CLL. Methods We evaluated the microRNA expression profiles of 94 samples of CLL cells for which the level of expression of 70-kD zeta-associated protein (ZAP-70), the mutational status of the rearranged immunoglobulin heavy-chain variable-region (IgVH ) gene, and the time from diagnosis to initial treatment were known. We also investigated the genomic sequence of 42 microRNA genes to identify abnormalities. Results A unique microRNA expression signature composed of 13 genes (of 190 analyzed) differentiated cases of CLL with low levels of ZAP-70 expression from those with high levels and cases with unmutated IgVH from those with mutated IgVH . The same microRNA signature was also associated with the presence or absence of disease progression. We also identified a...

2,554 citations

Journal ArticleDOI
TL;DR: Results suggest that alteration in microRNA expression is related to endocrine and acinar neoplastic transformation and progression of malignancy, and might prove useful in distinguishing tumors with different clinical behavior.
Abstract: Purpose We investigated the global microRNA expression patterns in normal pancreas, pancreatic endocrine tumors and acinar carcinomas to evaluate their involvement in transformation and malignant progression of these tumor types. MicroRNAs are small noncoding RNAs that regulate gene expression by targeting specific mRNAs for degradation or translation inhibition. Recent evidence indicates that microRNAs can contribute to tumor development and progression and may have diagnostic and prognostic value in several human malignancies. Materials and Methods Using a custom microarray, we studied the global microRNA expression in 12 nontumor pancreas and 44 pancreatic primary tumors, including 12 insulinomas, 28 nonfunctioning endocrine tumors, and four acinar carcinomas. Results Our data showed that a common pattern of microRNA expression distinguishes any tumor type from normal pancreas, suggesting that this set of microRNAs might be involved in pancreatic tumorigenesis; the expression of miR-103 and miR-107, as...

791 citations

Journal ArticleDOI
TL;DR: Data suggest that Tes functions as a tumor suppressor gene in vivo, and generates a Tes knockout mouse and uses it in an established model of carcinogen-induced gastric cancer.
Abstract: The Testin (TES) gene was previously identified as a putative human tumor suppressor gene at 7q31.2, a region that is frequently deleted in hematopoietic malignancies, as well as in epithelial tumors. To determine whether TES acts as a tumor suppressor in vivo, we generated a Tes knockout mouse and then used it in an established model of carcinogen-induced gastric cancer. In mice a zinc-deficient (ZD) diet enhances cellular proliferation in the forestomach and susceptibility to N-nitrosomethylbenzylamine (NMBA)-induced carcinogenesis. Five-week-old Tes wild-type (+/+), heterozygous (+/-), and homozygous (-/-) mice were divided into four groups: mice fed a zinc-sufficient diet (ZS); mice fed a ZD diet; ZS fed plus NMBA-treated mice (ZS+NMBA), and ZD fed plus NMBA-treated mice (ZD+NMBA). After 4 weeks, the ZS+NMBA and ZD+NMBA groups were treated with three intragastric doses of NMBA. Animals were killed 8 weeks after NMBA administration: 25% of +/+ mice developed benign lesions; 88% of +/- showed multiple papillomas, atypical glandular metaplasia, and squamous cell carcinomasl; and 81% of -/- mice displayed very large papillomas, squamous cell carcinomas, and adenocarcinomas. A statistically significant difference in tumor incidence was found between +/- versus +/+ and -/- versus +/+ (P < 0.0001). These data suggest that Tes functions as a tumor suppressor gene in vivo.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment and has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
Abstract: MicroRNA (miRNA ) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,345 citations

Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations

Journal Article
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.

6,064 citations

Journal ArticleDOI
TL;DR: The results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
Abstract: Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155 The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 00001) A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes

5,791 citations

Journal ArticleDOI
TL;DR: Evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes.
Abstract: MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer

5,693 citations