scispace - formally typeset
Search or ask a question
Author

Claudio Anasetti

Bio: Claudio Anasetti is an academic researcher from Fred Hutchinson Cancer Research Center. The author has contributed to research in topics: Transplantation & Graft-versus-host disease. The author has an hindex of 94, co-authored 377 publications receiving 30983 citations. Previous affiliations of Claudio Anasetti include Veterans Health Administration & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that donor HLA incompatibility and prior alloimmunization are significant risk factors for graft failure, and that a more effective immunosuppressive regimen than those currently used is needed for consistent achievement of sustained engraftment of marrow transplanted from donors who are not HLA-identical siblings.
Abstract: We analyzed the relevance of HLA compatibility to sustained marrow engraftment in 269 patients with hematologic neoplasms who underwent bone marrow transplantations. Each patient received marrow from a family member who shared one HLA haplotype with the patient but differed to a variable degree for the HLA-A, B, and D antigens of the haplotype not shared. These 269 patients were compared with 930 patients who received marrow from siblings with identical HLA genotypes. All patients were treated with cyclophosphamide and total-body irradiation followed by the infusion of unmodified donor marrow cells. The rate of graft failure was 12.3 percent among the recipients of marrow from a donor with only one identical haplotype, as compared with 2.0 percent among recipients of marrow from a sibling with the same HLA genotype (both haplotypes inherited from the same parents) (P less than 0.0001). The incidence of graft failure correlated with the degree of donor HLA incompatibility. Graft failure occurred in 3 of 43 transplants (7 percent) from donors who were phenotypically HLA-matched with their recipient (haplotypes similar, but not inherited from the same parents), in 11 of 121 donors (9 percent) incompatible for one HLA locus, in 18 of 86 (21 percent) incompatible for two loci, and in 1 of 19 (5 percent) incompatible for three loci (P = 0.028). In a multivariate binary logistic regression analysis, independent risk factors associated with graft failure were donor incompatibility for HLA-B and D (relative risk = 2.1; 95 percent confidence interval, 1.7 to 2.5; P = 0.0004) and a positive crossmatch for anti-donor lymphocytotoxic antibody (relative risk = 2.3; 95 percent confidence interval, 1.8 to 2.8; P = 0.0038). Residual host lymphocytes were detected in 11 of 14 patients with graft failure, suggesting that the mechanism for graft failure could be host-mediated immune rejection. We conclude that donor HLA incompatibility and prior alloimmunization are significant risk factors for graft failure, and that a more effective immunosuppressive regimen than those currently used is needed for consistent achievement of sustained engraftment of marrow transplanted from donors who are not HLA-identical siblings.

659 citations

Journal ArticleDOI
TL;DR: Transplantation of marrow from an HLA-matched, unrelated donor is safe and effective therapy for selected patients with chronic myeloid leukemia.
Abstract: Background Chronic myeloid leukemia can be cured by marrow transplantation from an HLA-identical sibling donor. The use of transplants from unrelated donors is an option for the 70 percent of patients without an HLA-identical sibling, but the morbidity and mortality associated with such transplants have been cause for concern. We analyzed the safety and efficacy of transplants from unrelated donors for the treatment of chronic myeloid leukemia and identified variables that predict a favorable outcome. Methods Between May 1985 and December 1994, 196 patients with Philadelphia chromosome–positive chronic myeloid leukemia in chronic phase received marrow transplants from unrelated donors. Results The median follow-up was 5 years (range, 1.2 to 10.1). Graft failure occurred in 5 percent of patients who could be evaluated. Acute graft-versus-host disease of grade III or IV severity was observed in 35 percent of patients who received HLA-matched transplants, and the estimated cumulative incidence of relapse at ...

615 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal ArticleDOI
TL;DR: The 2014 NIH consensus maintains the framework of the prior consensus with further refinement based on new evidence, and focuses attention on the causes of organ-specific abnormalities to chronic GVHD.

4,122 citations

Journal ArticleDOI
TL;DR: It is shown that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs against cancer and AIDS.
Abstract: In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.

3,472 citations

Book ChapterDOI
TL;DR: The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation.
Abstract: Publisher Summary Studies of cytotoxicity by human lymphocytes revealed not only that both allogeneic and syngeneic tumor cells were lysed in a non-MHC-restricted fashion, but also that lymphocytes from normal donors were often cytotoxic. Lymphocytes from any healthy donor, as well as peripheral blood and spleen lymphocytes from several experimental animals, in the absence of known or deliberate sensitization, were found to be spontaneously cytotoxic in vitro for some normal fresh cells, most cultured cell lines, immature hematopoietic cells, and tumor cells. This type of nonadaptive, non-MHC-restricted cellmediated cytotoxicity was defined as “natural” cytotoxicity, and the effector cells mediating natural cytotoxicity were functionally defined as natural killer (NK) cells. The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation. Unlike cytotoxic T cells, NK cells cannot be demonstrated to have clonally distributed specificity, restriction for MHC products at the target cell surface, or immunological memory. NK cells cannot yet be formally assigned to a single lineage based on the definitive identification of a stem cell, a distinct anatomical location of maturation, or unique genotypic rearrangements.

2,982 citations