scispace - formally typeset
Search or ask a question
Author

Claudio Battilocchio

Bio: Claudio Battilocchio is an academic researcher from Syngenta. The author has contributed to research in topics: Flow chemistry & Diazo. The author has an hindex of 30, co-authored 67 publications receiving 2692 citations. Previous affiliations of Claudio Battilocchio include Sapienza University of Rome & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.
Abstract: Over the last two decades, flow technologies have become increasingly popular in the field of organic chemistry, offering solutions for engineering and/or chemical problems. Flow reactors enhance the mass and heat transfer, resulting in rapid reaction mixing, and enable a precise control over the reaction parameters, increasing the overall process selectivity, efficiency and safety. These features allow chemists to tackle unexploited challenges in their work, with the ultimate objective making chemistry more accessible for laboratory and industrial applications, avoiding the need to store and handle toxic, reactive and explosive reagents. This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.

490 citations

Journal ArticleDOI
TL;DR: The screening of genomic libraries and whole-genome sequencing found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MMPL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family.
Abstract: The 1,5-diarylpyrrole derivative BM212 was previously shown to be active against multidrug-resistant clinical isolates and Mycobacterium tuberculosis residing within macrophages as well as against Mycobacterium avium and other atypical mycobacteria. To determine its mechanism of action, we identified the cellular target. Spontaneous Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Rv mutants that were resistant to BM212 were isolated. By the screening of genomic libraries and by whole-genome sequencing, we found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MmpL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family. Susceptibility was unaffected by the efflux pump inhibitors reserpine, carbonylcyanide m-chlorophenylhydrazone, and verapamil. Uptake/efflux experiments with [(14)C]BM212 demonstrated that resistance is not driven by the efflux of BM212. Together, these data strongly suggest that the MmpL3 protein is the cellular target of BM212.

196 citations

Journal ArticleDOI
TL;DR: How the advent of machines is impacting on organic synthesis programs is described, with particular emphasis on the practical issues associated with the design of chemical reactors.
Abstract: In this Review we describe how the advent of machines is impacting on organic synthesis programs, with particular emphasis on the practical issues associated with the design of chemical reactors. In the rapidly changing, multivariant environment of the research laboratory, equipment needs to be modular to accommodate high and low temperatures and pressures, enzymes, multiphase systems, slurries, gases, and organometallic compounds. Additional technologies have been developed to facilitate more specialized reaction techniques such as electrochemical and photochemical methods. All of these areas create both opportunities and challenges during adoption as enabling technologies.

181 citations

Journal ArticleDOI
TL;DR: In this article, a modular software system that enables researchers to monitor and control chemical reactions via the Internet, using any device from any location in the world, is presented, enabling the automation of synthetic procedures and is able to autonomously self-optimize reaction parameters to find the best conditions meeting customizable, multicomponent optimization functions.

144 citations

Journal ArticleDOI
TL;DR: Highlights from recent literature reports are used to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle.
Abstract: Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Abstract: Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow Until recently, however, the question, “Should we do this in flow?” has merely been an afterthought This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts

1,192 citations

01 Dec 2007

1,121 citations

Journal ArticleDOI
TL;DR: This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.
Abstract: In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.

1,059 citations

Journal ArticleDOI
TL;DR: In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment.
Abstract: Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

1,027 citations

Journal ArticleDOI
TL;DR: This review will summarize the achievements made in cross-coupling area since 2001 and identify the new organometallic species generated from migratory insertion that may undergo various transformations.
Abstract: Transition-metal-catalyzed cross-coupling reactions have been well-established as indispensable tools in modern organic synthesis. One of the major research goals in cross-coupling area is expanding the scope of the coupling partners. In the past decade, diazo compounds (or their precursors N-tosylhydrazones) have emerged as nucleophilic cross-coupling partners in C–C single bond or C═C double bond formations in transition-metal-catalyzed reactions. This type of coupling reaction involves the following general steps. First, the organometallic species is generated by various processes, including oxidative addition, transmetalation, cyclization, C–C bond cleavage, and C–H bond activation. Subsequently, the organometallic species reacts with the diazo substrate to generate metal carbene intermediate, which undergoes rapid migratory insertion to form a C–C bond. The new organometallic species generated from migratory insertion may undergo various transformations. This type of carbene-based coupling has proven...

766 citations