scispace - formally typeset
Search or ask a question
Author

Claudio De Persis

Bio: Claudio De Persis is an academic researcher from University of Groningen. The author has contributed to research in topics: Control theory & Nonlinear system. The author has an hindex of 42, co-authored 268 publications receiving 5967 citations. Previous affiliations of Claudio De Persis include University of Twente & Washington University in St. Louis.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper analyzes networked control systems in the presence of denial-of-service (DoS) attacks, namely attacks that prevent transmissions over the network, to characterize frequency and duration of the DoS attacks under which input-to-state stability (ISS) of the closed-loop system can be preserved.
Abstract: The issue of cyber-security has become ever more prevalent in the analysis and design of networked systems. In this paper, we analyze networked control systems in the presence of denial-of-service (DoS) attacks, namely attacks that prevent transmissions over the network. We characterize frequency and duration of the DoS attacks under which input-to-state stability (ISS) of the closed-loop system can be preserved. To achieve ISS, a suitable scheduling of the transmission times is determined. It is shown that the considered framework is flexible enough so as to allow the designer to choose from several implementation options that can be used for trading-off performance versus communication resources. Examples are given to substantiate the analysis.

794 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derive a parametrization of linear feedback systems that paves the way to solve important control problems using data-dependent linear matrix inequalities only, which is remarkable in that no explicit system's matrices identification is required.
Abstract: In a paper by Willems et al., it was shown that persistently exciting data can be used to represent the input-output behavior of a linear system. Based on this fundamental result, we derive a parametrization of linear feedback systems that paves the way to solve important control problems using data-dependent linear matrix inequalities only. The result is remarkable in that no explicit system's matrices identification is required. The examples of control problems we solve include the state and output feedback stabilization, and the linear quadratic regulation problem. We also discuss robustness to noise-corrupted measurements and show how the approach can be used to stabilize unstable equilibria of nonlinear systems.

314 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider continuous-time average consensus dynamics in which the agents' states are communicated through uniform quantizers and prove that solutions to the resulting system are defined in the Krasowskii sense and converge to conditions of practical consensus.

277 citations

Journal ArticleDOI
TL;DR: A differential-geometric approach to the problem of fault detection and isolation for nonlinear systems and its applications in medicine and robotics is presented.

260 citations

Posted Content
TL;DR: A parametrization of linear feedback systems is derived that paves the way to solve important control problems using data-dependent linear matrix inequalities only and is remarkable in that no explicit system's matrices identification is required.
Abstract: In a paper by Willems and coauthors it was shown that persistently exciting data can be used to represent the input-output behavior of a linear system. Based on this fundamental result, we derive a parametrization of linear feedback systems that paves the way to solve important control problems using data-dependent Linear Matrix Inequalities only. The result is remarkable in that no explicit system's matrices identification is required. The examples of control problems we solve include the state and output feedback stabilization, and the linear quadratic regulation problem. We also discuss robustness to noise-corrupted measurements and show how the approach can be used to stabilize unstable equilibria of nonlinear systems.

259 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations

Journal ArticleDOI
TL;DR: A bibliographical review on reconfigurable fault-tolerant control systems (FTCS) is presented, with emphasis on the reconfiguring/restructurable controller design techniques.

2,455 citations

Book
01 Jan 1991
TL;DR: In this paper, the Third Edition of the Third edition of Linear Systems: Local Theory and Nonlinear Systems: Global Theory (LTLT) is presented, along with an extended version of the second edition.
Abstract: Series Preface * Preface to the Third Edition * 1 Linear Systems * 2 Nonlinear Systems: Local Theory * 3 Nonlinear Systems: Global Theory * 4 Nonlinear Systems: Bifurcation Theory * References * Index

1,977 citations