scispace - formally typeset
Search or ask a question
Author

Claudio Groff

Bio: Claudio Groff is an academic researcher. The author has contributed to research in topics: Population & Ursus. The author has an hindex of 16, co-authored 28 publications receiving 1951 citations.

Papers
More filters
Journal ArticleDOI
19 Dec 2014-Science
TL;DR: It is shown that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records, and coexistence alongside humans has become possible, argue the authors.
Abstract: The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.

1,290 citations

01 Jan 2012
TL;DR: In this article, an expert based update of the conservation status of all populations identified by the Large Carnivore Initiative for Europe (LCIE), available in the document “Guidelines for Population Level Management Plans for Large carnivores” (Linnell et al. 2008) and/or in the various Species Online Information Systems (http://www.lcie.kora.ch/sp‐ois/ ; also see Appendix 1).
Abstract: Large carnivores (bears Ursus arctos, wolves Canis lupus, lynx Lynx lynx and wolverines Gulo gulo) are among the most challenging group of species to maintain as large and continuous populations or to reintegrate back into the European landscape. Political, socioeconomic and society changes challenge past management approaches in some of the large populations. At the same time local improvements in habitat quality, the return of their prey species, public support and favourable legislation allow for the recovery of some small populations. Several of Europe’s large carnivore populations are large and robust, others are expanding, some small populations remain critically endangered and a few are declining. [ ] Large carnivores need very large areas and their conservation needs to be planned on very wide spatial scales that will often span many intra‐ and inter‐ national borders. Within these large scales conservation and management actions need to be coordinated. To facilitate coordination, a common understanding of the present day conservation status of large carnivores at national and population level is an important basis. [ ] The aim of this summary report is to provide an expert based update of the conservation status of all populations identified by the Large Carnivore Initiative for Europe (LCIE), available in the document “Guidelines for Population Level Management Plans for Large Carnivores” (Linnell et al. 2008) and/or in the various Species Online Information Systems (http://www.kora.ch/sp‐ois/ ; also see Appendix 1). [ ] However, methods used to monitor large carnivores vary and a direct comparison over time or among populations will never be possible at a continental scale. It is more realistic to have an insight into the general order of magnitude of the population, its trend and permanent range as the “currencies” for comparisons and assessments (see point 2). This summary also does not aim to replace the habitat directive reporting, but rather complement it. Discrepancies will likely occur due to different time periods covered and different agreements reached on common reporting criteria on a national level which has to deal with many more species. Furthermore, for several countries the most recent data or distribution map were not always available, yet. [ ] Changes in monitoring methods likely result in changing population estimates, even in stable populations. Improved and more costly methods may suddenly discover that previous estimates were too high, or may detect more individuals than previously assumed. Examples of both occur. Being aware of the change in methodology the expert assessment may still be “stable” for the population even if numbers listed in tables have changed. On the other hand, large scale “official” (government) estimates may be based on questionable or non‐transparent extrapolations that run contrary to data from reference areas within the country or similar regions from other countries. If the discrepancy is apparent, expert assessment needs to question official numbers. [ ] This summary does not aim at reviewing monitoring techniques. Examples of parameters and principles for monitoring large carnivores and some “good practice” examples have been previously compiled by the LCIE (http://www.lcie.org/Docs/LCIE%20IUCN/LCIE_PSS_m onitoring.pdf). Furthermore, references at the end of many country reports do provide ample examples of well documented and state of the art monitoring of large carnivores in Europe under a wide variety of different contexts.

183 citations

Journal ArticleDOI
TL;DR: Brown bear attacks on humans between 2000 and 2015 across most of the range inhabited by the species were investigated, and attacks have increased significantly over time and were more frequent at high bear and low human population densities.
Abstract: The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.

150 citations

Journal ArticleDOI
TL;DR: In this article, the authors applied genetic monitoring to the reintroduced brown bear population in northern Italy and found that the population increased rapidly, from nine founders to >27 individuals in 2008 (lambda=1.17-1.19).
Abstract: Genetic monitoring has rarely been used for wildlife translocations despite the potential benefits this approach offers, compared to traditional field-based methods. We applied genetic monitoring to the reintroduced brown bear population in northern Italy. From 2002 to 2008, 2781 hair and faecal samples collected noninvasively plus 12 samples obtained from captured or dead bears were used to follow the demographic and geographical expansion and changes in genetic composition. Individual genotypes were used to reconstruct the wild pedigree and revealed that the population increased rapidly, from nine founders to >27 individuals in 2008 (lambda=1.17-1.19). Spatial mapping of bear samples indicated that most bears were distributed in the region surrounding the translocation site; however, individual bears were found up to 163 km away. Genetic diversity in the population was high, with expected heterozygosity of 0.74-0.79 and allelic richness of 4.55-5.41. However, multi-year genetic monitoring data showed that mortality rates were elevated, immigration did not occur, one dominant male sired all cubs born from 2002 to 2005, genetic diversity declined, relatedness increased, inbreeding occurred, and the effective population size was extremely small (Ne=3.03, ecological method). The comprehensive information collected through genetic monitoring is critical for implementing future conservation plans for the brown bear population in the Italian Alps. This study provides a model for other reintroduction programmes by demonstrating how genetic monitoring can be implemented to uncover aspects of the demography, ecology and genetics of small and reintroduced populations that will advance our understanding of the processes influencing their viability, evolution, and successful restoration.

139 citations

Journal ArticleDOI
TL;DR: Challenging the paradigm of increased extinction risk in small populations, it is suggested that random fixation of deleterious alleles can be an important driver of divergence in isolation and can be tolerated when balancing selection prevents random loss of variation at important genes.
Abstract: About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes.

133 citations


Cited by
More filters
01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
19 Dec 2014-Science
TL;DR: It is shown that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records, and coexistence alongside humans has become possible, argue the authors.
Abstract: The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.

1,290 citations

Journal ArticleDOI
15 Jun 2018-Science
TL;DR: A global study of anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents revealed a strong effect of humans on daily patterns of wildlife activity.
Abstract: Rapid expansion of human activity has driven well-documented shifts in the spatial distribution of wildlife, but the cumulative effect of human disturbance on the temporal dynamics of animals has not been quantified. We examined anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents. Our global study revealed a strong effect of humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average factor of 1.36 in response to human disturbance. This finding was consistent across continents, habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance of humans may facilitate human-wildlife coexistence. However, such responses can result in marked shifts away from natural patterns of activity, with consequences for fitness, population persistence, community interactions, and evolution.

599 citations

Journal ArticleDOI
19 Oct 2018-Science
TL;DR: Biodiversity-based techniques can be used to manage most human-modified lands as “working landscapes” and ensure that the production of food, fiber, fuel, and timber can be sustained over the long run and be more resilient to extreme events.
Abstract: How can we manage farmlands, forests, and rangelands to respond to the triple challenge of the Anthropocene-biodiversity loss, climate change, and unsustainable land use? When managed by using biodiversity-based techniques such as agroforestry, silvopasture, diversified farming, and ecosystem-based forest management, these socioeconomic systems can help maintain biodiversity and provide habitat connectivity, thereby complementing protected areas and providing greater resilience to climate change. Simultaneously, the use of these management techniques can improve yields and profitability more sustainably, enhancing livelihoods and food security. This approach to "working lands conservation" can create landscapes that work for nature and people. However, many socioeconomic challenges impede the uptake of biodiversity-based land management practices. Although improving voluntary incentives, market instruments, environmental regulations, and governance is essential to support working lands conservation, it is community action, social movements, and broad coalitions among citizens, businesses, nonprofits, and government agencies that have the power to transform how we manage land and protect the environment.

575 citations

Journal ArticleDOI
21 Apr 2017-Science
TL;DR: Many examples of conservation success show that losses can be halted and even reversed, and building on these lessons to turn the tide of biodiversity loss will require bold and innovative action to transform historical relationships between human populations and nature.
Abstract: Biodiversity is essential to human well-being, but people have been reducing biodiversity throughout human history. Loss of species and degradation of ecosystems are likely to further accelerate in the coming years. Our understanding of this crisis is now clear, and world leaders have pledged to avert it. Nonetheless, global goals to reduce the rate of biodiversity loss have mostly not been achieved. However, many examples of conservation success show that losses can be halted and even reversed. Building on these lessons to turn the tide of biodiversity loss will require bold and innovative action to transform historical relationships between human populations and nature.

528 citations