scispace - formally typeset
Search or ask a question
Author

Claudio Orlando

Bio: Claudio Orlando is an academic researcher from University of Florence. The author has contributed to research in topics: Cancer & TaqMan. The author has an hindex of 46, co-authored 165 publications receiving 7129 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A distinct, previously unrecognized receptor named CXCR3-B is described, derived from an alternative splicing of the CX CR3 gene that mediates the angiostatic activity of CxCR3 ligands and also acts as functional receptor for CXCL4.
Abstract: The chemokines CXCL9/Mig, CXCL10/IP-10, and CXCL11/I-TAC regulate lymphocyte chemotaxis, mediate vascular pericyte proliferation, and act as angiostatic agents, thus inhibiting tumor growth. These multiple activities are apparently mediated by a unique G protein-coupled receptor, termed CXCR3. The chemokine CXCL4/PF4 shares several activities with CXCL9, CXCL10, and CXCL11, including a powerful angiostatic effect, but its specific receptor is still unknown. Here, we describe a distinct, previously unrecognized receptor named CXCR3-B, derived from an alternative splicing of the CXCR3 gene that mediates the angiostatic activity of CXCR3 ligands and also acts as functional receptor for CXCL4. Human microvascular endothelial cell line-1 (HMEC-1), transfected with either the known CXCR3 (renamed CXCR3-A) or CXCR3-B, bound CXCL9, CXCL10, and CXCL11, whereas CXCL4 showed high affinity only for CXCR3-B. Overexpression of CXCR3-A induced an increase of survival, whereas overexpression of CXCR3-B dramatically reduced DNA synthesis and up-regulated apoptotic HMEC-1 death through activation of distinct signal transduction pathways. Remarkably, primary cultures of human microvascular endothelial cells, whose growth is inhibited by CXCL9, CXCL10, CXCL11, and CXCL4, expressed CXCR3-B, but not CXCR3-A. Finally, monoclonal antibodies raised to selectively recognize CXCR3-B reacted with endothelial cells from neoplastic tissues, providing evidence that CXCR3-B is also expressed in vivo and may account for the angiostatic effects of CXC chemokines.

677 citations

Journal ArticleDOI
TL;DR: The results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.

605 citations

Journal ArticleDOI
TL;DR: The role of reference materials and calibrators and the different strategies adopted for nucleic acid quantification are reviewed and a recent promising technology for quantitative PCR in which the use of fluorogenic probes and dedicated instrumentation allows the development of homogeneous methods is dedicated.
Abstract: In recent years the growing interest in quantitative applications of the polymerase chain reaction (PCR) has favoured the development of a large number of assay procedures suitable for this purpose. In this paper we review some basic principles of quantitative PCR and in particular the role of reference materials and calibrators and the different strategies adopted for nucleic acid quantification. We focus on two methodological approaches for quantitative PCR in this review: competitive PCR and real-time quantitative PCR based on the use of fluorogenic probes. The first is one of the most common methods of quantitative PCR and we discuss the structure of the competitors and the various assay procedures. The second section is dedicated to a recent promising technology for quantitative PCR in which the use of fluorogenic probes and dedicated instrumentation allows the development of homogeneous methods. Assay performance of these methods in terms of practicability and reliability indicates that these kinds of technologies will have a widespread use in the clinical laboratory in the near future.

334 citations

Journal ArticleDOI
TL;DR: It is demonstrated, for the first time, that androgens positively regulate PDE5, thus providing a possible explanation about the highest abundance of this enzyme in male genital tract.
Abstract: By real-time RT-PCR and Western blot analysis, we found that phosphodiesterase type 5 (PDE5) mRNA and protein abundance was several fold higher in human male than in female reproductive tracts. The highest mRNA level (>1 × 107 molecules/μg total RNA) was detected in human corpora cavernosa (CC), where PDE5 protein was immunolocalized in both muscular and endothelial compartment. The possible role of androgens in regulating PDE5 expression was studied using a previously established rabbit model of hypogonadotropic hypogonadism. In this model, hypogonadism reduced, and testosterone (T) supplementation restored, CC PDE5 gene and protein expression. In addition, T supplementation completely rescued and even enhanced cyclic GMP conversion to metabolites, without changing IC50 for sildenafil (IC50 = 2.16 ± 0.62 nm). In control CC strips, sildenafil dose-dependently increased relaxation induced by electrical field stimulation, with EC50 = 3.42 ± 1.7 nm. Hypogonadism reduced, and T increased, sildenafil effect on...

326 citations

Journal ArticleDOI
TL;DR: The ISET method allows for the collection of breast carcinoma cells by filtration despite their smaller dimension relative to other carcinoma cell types, and the sensitivity and specificity of the method is comparable with those obtained using the quantitative real-time RT-PCR assay for the evaluation of CK-19 mRNA expression.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study enters into the particular topics of the relative quantification in real-time RT-PCR of a target gene transcript in comparison to a reference gene transcript and presents a new mathematical model that needs no calibration curve.
Abstract: Use of the real-time polymerase chain reaction (PCR) to amplify cDNA products reverse transcribed from mRNA is on the way to becoming a routine tool in molecular biology to study low abundance gene expression. Real-time PCR is easy to perform, provides the necessary accuracy and produces reliable as well as rapid quantification results. But accurate quantification of nucleic acids requires a reproducible methodology and an adequate mathematical model for data analysis. This study enters into the particular topics of the relative quantification in real-time RT–PCR of a target gene transcript in comparison to a reference gene transcript. Therefore, a new mathematical model is presented. The relative expression ratio is calculated only from the real-time PCR efficiencies and the crossing point deviation of an unknown sample versus a control. This model needs no calibration curve. Control levels were included in the model to standardise each reaction run with respect to RNA integrity, sample loading and inter-PCR variations. High accuracy and reproducibility (<2.5% variation) were reached in LightCycler PCR using the established mathematical model.

30,462 citations

Journal ArticleDOI
TL;DR: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency.
Abstract: Background: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader’s ability to evaluate critically the quality of the results presented or to repeat the experiments. Content: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Summary: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.

12,469 citations

Journal ArticleDOI
TL;DR: Development and application of REST is explained, the usefulness of relative expression in real-time PCR using REST is discussed and the mathematical model used is based on the PCR efficiencies and the mean crossing point deviation between the sample and control group.
Abstract: Real-time reverse transcription followed by polymerase chain reaction (RT–PCR) is the most suitable method for the detection and quantification of mRNA. It offers high sensitivity, good reproducibility and a wide quantification range. Today, relative expression is increasingly used, where the expression of a target gene is standardised by a non-regulated reference gene. Several mathematical algorithms have been developed to compute an expression ratio, based on real-time PCR efficiency and the crossing point deviation of an unknown sample versus a control. But all published equations and available models for the calculation of relative expression ratio allow only for the determination of a single transcription difference between one control and one sample. Therefore a new software tool was established, named REST© (relative expression software tool), which compares two groups, with up to 16 data points in a sample and 16 in a control group, for reference and up to four target genes. The mathematical model used is based on the PCR efficiencies and the mean crossing point deviation between the sample and control group. Subsequently, the expression ratio results of the four investigated transcripts are tested for significance by a randomisation test. Herein, development and application of REST© is explained and the usefulness of relative expression in real-time PCR using REST© is discussed. The latest software version of REST© and examples for the correct use can be downloaded at http://www.wzw.tum.de/gene-quantification/.

7,196 citations

Journal ArticleDOI
TL;DR: A novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes, rooted in a mathematical model of gene expression, that provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene.
Abstract: Accurate normalization is an absolute prerequisite for correct measurement of gene expression. For quantitative real-time reverse transcription-PCR (RT-PCR), the most commonly used normalization strategy involves standardization to a single constitutively expressed control gene. However, in recent years, it has become clear that no single gene is constitutively expressed in all cell types and under all experimental conditions, implying that the expression stability of the intended control gene has to be verified before each experiment. We outline a novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes. The strategy is rooted in a mathematical model of gene expression that enables estimation not only of the overall variation of the candidate normalization genes but also of the variation between sample subgroups of the sample set. Notably, the strategy provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene. In a side-by-side comparison with a previously published strategy, our model-based approach performed in a more robust manner and showed less sensitivity toward coregulation of the candidate normalization genes. We used the model-based strategy to identify genes suited to normalize quantitative RT-PCR data from colon cancer and bladder cancer. These genes are UBC, GAPD, and TPT1 for the colon and HSPCB, TEGT, and ATP5B for the bladder. The presented strategy can be applied to evaluate the suitability of any normalization gene candidate in any kind of experimental design and should allow more reliable normalization of RT-PCR data.

6,007 citations

Journal ArticleDOI
TL;DR: The technical aspects involved are discussed, conventional and kinetic RT-PCR methods for quantitating gene expression are contrasted, and the usefulness of these assays are illustrated by demonstrating the significantly different levels of transcription between individuals of the housekeeping gene family, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).
Abstract: The reverse transcription polymerase chain reaction (RT-PCR) is the most sensitive method for the detection of low-abundance mRNA, often obtained from limited tissue samples. However, it is a complex technique, there are substantial problems associated with its true sensitivity, reproducibility and specificity and, as a quantitative method, it suffers from the problems inherent in PCR. The recent introduction of fluorescence-based kinetic RT-PCR procedures significantly simplifies the process of producing reproducible quantification of mRNAs and promises to overcome these limitations. Nevertheless, their successful application depends on a clear understanding of the practical problems, and careful experimental design, application and validation remain essential for accurate quantitative measurements of transcription. This review discusses the technical aspects involved, contrasts conventional and kinetic RT-PCR methods for quantitating gene expression and compares the different kinetic RT-PCR systems. It illustrates the usefulness of these assays by demonstrating the significantly different levels of transcription between individuals of the housekeeping gene family, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

4,100 citations