scispace - formally typeset
Search or ask a question
Author

Claudio Sturino

Bio: Claudio Sturino is an academic researcher from Merck & Co.. The author has contributed to research in topics: Prostaglandin & Glucal. The author has an hindex of 20, co-authored 53 publications receiving 1304 citations. Previous affiliations of Claudio Sturino include University of Toronto & Vertex Pharmaceuticals.


Papers
More filters
Journal ArticleDOI
TL;DR: DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans, and a clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA.
Abstract: Nicotinic acid (NA) is commonly used to treat dyslipidemia, but it elicits an adverse effect, termed flushing, which consists of cutaneous vasodilation with associated discomfort. An animal model of NA-induced flushing has been established in mice. As in humans, NA stimulated vasodilation in a dose-dependent manner, was associated with an increase of the vasodilatory prostaglandin (PG) D2 in plasma and could be blocked by pretreatment with aspirin. Two PGD2 receptors have been identified: PGD2 receptor 1 (DP1, also called DP) and PGD2 receptor 2 (DP2, sometimes termed CRTH2). DP2 does not mediate NA-induced vasodilation; the DP2-specific agonist DK-PGD2 (13,14-dihydro-15-keto-PGD2) did not induce cutaneous vasodilation, and DP2−/− mice had a normal vasodilatory response to NA. By contrast, BW245C, a DP1-selective agonist, induced vasodilation in mice, and MK-0524, a DP1-selective antagonist, blocked both PGD2- and NA-induced vasodilation. NA-induced vasodilation was also studied in DP1+/+, DP1+/−, and DP1−/− mice; although NA-induced vasodilation depended almost completely on DP1 in female mice, it depended only partially on DP1 in male mice. The residual NA-induced vasodilation in male DP−/− mice was aspirin-sensitive. Thus, in the mouse, DP1 appears to be an important component involved in NA-induced vasodilation, but other cyclooxygenase-dependent mechanisms also may be involved. A clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA. These studies suggest that DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans.

300 citations

Journal ArticleDOI
TL;DR: The structure-activity relationship of the chemical series was conducted and several analogues displaying sub-nanomolar K(i) values at the EP3 receptor and micromolar activities at theEP1, EP2 and EP4 receptors were found.

115 citations

Journal ArticleDOI
TL;DR: A series of acyclic vinyl ethers have been prepared and treated with Grubbs' ruthenium catalyst ((Cy 3 P) 2 RuCl 2 CHPh) as mentioned in this paper.

71 citations

Journal ArticleDOI
TL;DR: The palladium-catalyzed couplings of the protected 1-(tributylstannyl)-D-glucal 1 and substituted aryl bromides provide the corresponding C-arylglucals and a dimer as mentioned in this paper.
Abstract: The palladium-catalyzed couplings of the protected 1-(tributylstannyl)-D-glucal 1 and substituted aryl bromides provide the corresponding C-arylglucals and a dimer

70 citations


Cited by
More filters
01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

Journal ArticleDOI
TL;DR: In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates.
Abstract: The concept of isosterism between relatively simple chemical entities was originally contemplated by James Moir in 1909, a notion further refined by H. G. Grimm’s hydride displacement law and captured more effectively in the ideas advanced by Irving Langmuir based on experimental observations. Langmuir coined the term “isostere” and, 18 years in advance of its actual isolation and characterization, predicted that the physical properties of the then unknown ketene would resemble those of diazomethane. The emergence of bioisosteres as structurally distinct compounds recognized similarly by biological systems has its origins in a series of studies published byHans Erlenmeyer in the 1930s, who extended earlier work conducted by Karl Landsteiner. Erlenmeyer showed that antibodies were unable to discriminate between phenyl and thienyl rings or O, NH, and CH2 in the context of artificial antigens derived by reacting diazonium ions with proteins, a process that derivatized the ortho position of tyrosine, as summarized in Figure 1 The term “bioisostere” was introduced by Harris Friedman in 1950 who defined it as compounds eliciting a similar biological effect while recognizing that compounds may be isosteric but not necessarily bioisosteric. This notion anticipates that the application of bioisosterism will depend on context, relying much less on physicochemical properties as the underlying principle for biochemical mimicry. Bioisosteres are typically less than exact structural mimetics and are often more alike in biological rather than physical properties. Thus, an effective bioisostere for one biochemical application may not translate to another setting, necessitating the careful selection and tailoring of an isostere for a specific circumstance. Consequently, the design of bioisosteres frequently introduces structural changes that can be beneficial or deleterious depending on the context, with size, shape, electronic distribution, polarizability, dipole, polarity, lipophilicity, and pKa potentially playing key contributing roles in molecular recognition and mimicry. In the contemporary practice of medicinal chemistry, the development and application of bioisosteres have been adopted as a fundamental tactical approach useful to address a number of aspects associated with the design and development of drug candidates. The established utility of bioisosteres is broad in nature, extending to improving potency, enhancing selectivity, altering physical properties, reducing or redirecting metabolism, eliminating or modifying toxicophores, and acquiring novel intellectual property. In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates. Interesting concepts that may have been poorly effective in the context examined are captured, since the ideas may have merit in alternative circumstances. A comprehensive cataloging of bioisosteres is beyond the scope of what will be provided, although a synopsis of relevant isosteres of a particular functionality is summarized in a succinct fashion in several sections. Isosterism has also found productive application in the design and optimization of organocatalysts, and there are several examples in which functional mimicry established initially in a medicinal chemistry setting has been adopted by this community.

2,049 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the development of catalysts for olefin metathesis which combine high activity, durability, and excellent tolerance towards polar functional groups.
Abstract: The advent of well-defined catalysts for olefin metathesis which combine high activity, durability, and excellent tolerance towards polar functional groups has revolutionized the field. The past decade has seen the rapid embrace of these reagents as tools for advanced organic and polymer chemistry and the success of this development is witnessed by a plethora of elegant applications to the synthesis of natural and nonnatural products. This review article provides an overview of these developments and intends to familiarize the reader with some very recent advances which hold the promise to expand the scope of the reaction even further. Moreover, the positive impact of metathesis on the fundamental logic of retrosynthetic planning is demonstrated by means of typical examples. Finally, it will be shown that metathesis is by no means restricted to alkenes as substrates, and some comments on metathesis reactions following unconventional mechanistic pathways will also be presented.

1,614 citations