scispace - formally typeset
Search or ask a question
Author

Clayton D. Crawley

Other affiliations: University of Cambridge
Bio: Clayton D. Crawley is an academic researcher from University of Chicago. The author has contributed to research in topics: DNA damage & Temozolomide. The author has an hindex of 9, co-authored 12 publications receiving 374 citations. Previous affiliations of Clayton D. Crawley include University of Cambridge.

Papers
More filters
Journal ArticleDOI
TL;DR: To block DSB repair in breast cancer cells and tumors, this work targeted poly(ADP-ribose) polymerase (PARP) with ABT-888 (veliparib), one of several PARP inhibitors currently in clinical trials.
Abstract: Persistent DNA double-strand breaks (DSB) may determine the antitumor effects of ionizing radiation (IR) by inducing apoptosis, necrosis, mitotic catastrophe, or permanent growth arrest. IR induces rapid modification of megabase chromatin domains surrounding DSBs via poly-ADP-ribosylation, phosphorylation, acetylation, and protein assembly. The dynamics of these IR-induced foci (IRIF) have been implicated in DNA damage signaling and DNA repair. As an IRIF reporter, we tracked the relocalization of green fluorescent protein fused to a chromatin binding domain of the checkpoint adapter protein 53BP1 after IR of breast cancer cells and tumors. To block DSB repair in breast cancer cells and tumors, we targeted poly(ADP-ribose) polymerase (PARP) with ABT-888 (veliparib), one of several PARP inhibitors currently in clinical trials. PARP inhibition markedly enhanced IRIF persistence and increased breast cancer cell senescence both in vitro and in vivo, arguing for targeting IRIF resolution as a novel therapeutic strategy.

99 citations

Journal ArticleDOI
01 Dec 2014
TL;DR: Data show that loss of Nfkb1 leads to early animal aging that is associated with reduced apoptosis and increased cellular senescence, and support the strong link between the NF-(B pathway and mammalian aging.
Abstract: NF-κB is a major regulator of age-dependent gene expression and the p50/NF-κB1 subunit is an integral modulator of NF-κB signaling. Here, we examined Nfkb1-/- mice to investigate the relationship between this subunit and aging. Although Nfkb1-/- mice appear similar to littermates at six months of age, by 12 months they have a higher incidence of several observable age-related phenotypes. In addition, aged Nfkb1-/- animals have increased kyphosis, decreased cortical bone, increased brain GFAP staining and a decrease in overall lifespan compared to Nfkb1+/+. In vitro, serially passaged primary Nfkb1-/- MEFs have more senescent cells than comparable Nfkb1+/+ MEFs. Also, Nfkb1-/- MEFs have greater amounts of phospho-H2AX foci and lower levels of spontaneous apoptosis than Nfkb1+/+, findings that are mirrored in the brains of Nfkb1-/- animals compared to Nfkb1+/+. Finally, in wildtype animals a substantial decrease in p50 DNA binding is seen in aged tissue compared to young. Together, these data show that loss of Nfkb1 leads to early animal aging that is associated with reduced apoptosis and increased cellular senescence. Moreover, loss of p50 DNA binding is a prominent feature of aged mice relative to young. These findings support the strong link between the NF-κB pathway and mammalian aging.

78 citations

Journal ArticleDOI
21 Jan 2016-Oncogene
TL;DR: The use of in vitro and in vivo genetic ablation and knockdown experiments in murine models and the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.
Abstract: Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.

68 citations

Journal ArticleDOI
TL;DR: Findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA.
Abstract: Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-кB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-кB-dependent factors altered in response to temozolomide (TMZ) and found the long non-coding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. Additionally, we demonstrated that MALAT1 expression was co-regulated by p50 (p105) and p53 via novel кB- and p53-binding sites in the proximal MALAT1 coding region. TMZ treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both кB and p53 cis-elements were required for efficient transactivation in response to TMZ. Depletion of MALAT1 sensitized patient-derived GBM cells to TMZ cytotoxicity, and in vivo delivery of nanoparticle encapsulated anti-MALAT1 siRNA increased the efficacy of TMZ in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publically available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA.

67 citations

Journal ArticleDOI
TL;DR: The p50 subunit of NF-κB is identified as a central target in the response to O(6)-MeG and it is demonstrated that p50 is required for S(N)1-methylator-induced cytotoxicity.

47 citations


Cited by
More filters
01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

01 Aug 2010
TL;DR: In this paper, the identification of lincRNAs (lincRNA-p21) that serve as a repressor in p53-dependent transcriptional responses was reported, and the observed transcriptional repression was mediated through the physical association with hnRNP-K at repressed genes and regulation of p53 mediates apoptosis.
Abstract: Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.

1,593 citations

Journal ArticleDOI
18 Mar 2016-Cells
TL;DR: Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-σB for therapeutic benefit.
Abstract: The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.

470 citations

Journal ArticleDOI
TL;DR: Proposed therapeutic strategies that aim to enhance the pro-senescence response in tumours are proposed and focused on concepts that are relevant to a pro- senescence approach to therapy.
Abstract: Abundant evidence points to a crucial physiological role for cellular senescence in combating tumorigenesis. Thus, the engagement of senescence may represent a key component for therapeutic intervention in the eradication of cancer. In this Opinion article, we focus on concepts that are relevant to a pro-senescence approach to therapy and we propose potential therapeutic strategies that aim to enhance the pro-senescence response in tumours.

405 citations