scispace - formally typeset
Search or ask a question
Author

Clayton Jones

Bio: Clayton Jones is an academic researcher. The author has contributed to research in topics: Intervention AUV & Underwater glider. The author has an hindex of 1, co-authored 1 publications receiving 237 citations.

Papers
More filters
Book ChapterDOI
28 Nov 2002
Abstract: A class of small (50 kg, 2 m length), reusable autonomous underwater vehicles capable of operating at speeds cm/s with ranges several thousand kilometers and durations of months has been developed and tested. The vehicles, autonomous profiling floats with wings, execute sawtooth patterns between the surface, where they are located and com to shore, and depths of O(1000 m). These vehicles are commanded remotely and report results to shore in near real tim ent approaches to the various design issues are embodied in the vehicles Spray, Seaglider and Slocum models desc including batteryand thermal-powered propulsion, different depth and speed capabilities, diverse hydrodynamic appro reducing drag and gliding control, various communication schemes, and a range of sensors. These approaches are des examples of completed scientific missions are given. l., e st els. h ic es rs s, ing ult g, em cg on the ive is cles an be an eing ean urand the lidin

260 citations


Cited by
More filters
Journal ArticleDOI
01 May 2005
TL;DR: In this paper, several fundamental key aspects of underwater acoustic communications are investigated and a cross-layer approach to the integration of all communication functionalities is suggested.
Abstract: Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. Furthermore, open research issues are discussed and possible solution approaches are outlined. � 2005 Published by Elsevier B.V.

2,864 citations

Journal ArticleDOI
TL;DR: Underwater gliders are autonomous vehicles that profile vertically by buoyancy control and move horizontally on wings as mentioned in this paper, and are among the best approaches to achieving subsurface spatial resolution necessary for ocean research.
Abstract: Underwater gliders are autonomous vehicles that profile vertically by buoyancy control and move horizontally on wings. Gliders are reviewed, from their conception by Stommel as an extension of autonomous profiling floats, through their development in 3 models, and including their first deployments singly and in numbers. This paper discusses the basics of glider function as implemented by University of Washington, Seaglider, Scripps Institution of Oceanography, and Webb Research in Slocum. Preliminary results are presented from a recent demonstration project that used a network of gliders off Monterey. A wide range of sensors has already been deployed on gliders, with many under development, and a wider range of future possibilities. Glider networks appear to be among the best approaches to achieving subsurface spatial resolution necessary for ocean research.

652 citations

Journal ArticleDOI
21 Mar 2018
TL;DR: This work presents the design, fabrication, control, and oceanic testing of a soft robot fish that can swim in three dimensions to continuously record the aquatic life it is following or engaging and exhibits a lifelike undulating tail motion enabled by a soft robotic actuator design.
Abstract: Closeup exploration of underwater life requires new forms of interaction, using biomimetic creatures that are capable of agile swimming maneuvers, equipped with cameras, and supported by remote human operation. Current robotic prototypes do not provide adequate platforms for studying marine life in their natural habitats. This work presents the design, fabrication, control, and oceanic testing of a soft robotic fish that can swim in three dimensions to continuously record the aquatic life it is following or engaging. Using a miniaturized acoustic communication module, a diver can direct the fish by sending commands such as speed, turning angle, and dynamic vertical diving. This work builds on previous generations of robotic fish that were restricted to one plane in shallow water and lacked remote control. Experimental results gathered from tests along coral reefs in the Pacific Ocean show that the robotic fish can successfully navigate around aquatic life at depths ranging from 0 to 18 meters. Furthermore, our robotic fish exhibits a lifelike undulating tail motion enabled by a soft robotic actuator design that can potentially facilitate a more natural integration into the ocean environment. We believe that our study advances beyond what is currently achievable using traditional thruster-based and tethered autonomous underwater vehicles, demonstrating methods that can be used in the future for studying the interactions of aquatic life and ocean dynamics.

469 citations

Proceedings ArticleDOI
25 Sep 2006
TL;DR: In this paper, architectures for two-dimensional and three-dimensional underwater sensor networks are discussed and open research issues are discussed.
Abstract: In this paper, architectures for two-dimensional and three-dimensional underwater sensor networks are discussed. A detailed overview on the current solutions for medium access control, network, and transport layer protocols are given and open research issues are discussed.

356 citations

Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Robotic networks, satellites, ships, and instruments mounted on animals and ice will collect data needed to improve numerical models that can then be used to study the future of polar ecosystems as climate change progresses.
Abstract: Climate change will alter marine ecosystems; however, the complexity of the food webs, combined with chronic undersampling, constrains efforts to predict their future and to optimally manage and protect marine resources. Sustained observations at the West Antarctic Peninsula show that in this region, rapid environmental change has coincided with shifts in the food web, from its base up to apex predators. New strategies will be required to gain further insight into how the marine climate system has influenced such changes and how it will do so in the future. Robotic networks, satellites, ships, and instruments mounted on animals and ice will collect data needed to improve numerical models that can then be used to study the future of polar ecosystems as climate change progresses.

325 citations