scispace - formally typeset
Search or ask a question
Author

Clémence Corminboeuf

Bio: Clémence Corminboeuf is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Density functional theory & Catalysis. The author has an hindex of 49, co-authored 214 publications receiving 9932 citations. Previous affiliations of Clémence Corminboeuf include École Polytechnique & University of Giessen.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review is presented on nucleus-independent chem.
Abstract: A comprehensive review is presented on nucleus-independent chem. shift as a criterion for aromaticity. [on SciFinder (R)]

2,463 citations

Journal ArticleDOI
TL;DR: In this paper, the components of nucleus-independent chemical shift tensors for Dnhn-annulenes are discussed as indexes of the aromatic character of electronic π systems and the component corresponding to the principal axis perpendicular to the ring plane is found to be a good measure for the characterisation of the π system of the ring.
Abstract: The components of nucleus-independent chemical shift (NICS) tensors for Dnhn-annulenes are discussed as indexes of the aromatic character of electronic π systems. The component corresponding to the principal axis perpendicular to the ring plane, NICSzz, is found to be a good measure for the characterisation of the π system of the ring. Isotropic NICS values at ring centres contain large influences from the σ system and from all three principal components of the NICS tensor. At large distances away from the ring center, NICSzz, which is dominated by contributions from the π system, characterizes NICS well.

406 citations

Journal ArticleDOI
TL;DR: dDsC, presented herein, is constructed from dispersion coefficients computed on the basis of a generalized gradient approximation to Becke and Johnson's exchange-hole dipole moment formalism, making the approach especially valuable for modeling redox reactions and charged species in general.
Abstract: Standard density functional approximations cannot accurately describe interactions between nonoverlapping densities. A simple remedy consists in correcting for the missing interactions a posteriori, adding an attractive energy term summed over all atom pairs. The density-dependent energy correction, dDsC, presented herein, is constructed from dispersion coefficients computed on the basis of a generalized gradient approximation to Becke and Johnson’s exchange-hole dipole moment formalism. dDsC also relies on an extended Tang and Toennies damping function accounting for charge-overlap effects. The comprehensive benchmarking on 341 diverse reaction energies divided into 18 illustrative test sets validates the robust performance and general accuracy of dDsC for describing various intra- and intermolecular interactions. With a total MAD of 1.3 kcal mol–1, B97-dDsC slightly improves the results of M06-2X and B2PLYP-D3 (MAD = 1.4 kcal mol–1 for both) at a lower computational cost. The density dependence of both ...

383 citations

Journal ArticleDOI
TL;DR: Energies computed by B3LYP and other popular DFT functionals are flawed by systematic errors, which can become considerable for larger molecules, as illustrated by the isodesmic stabilization energies of n-alkanes.

379 citations

Journal ArticleDOI
TL;DR: A simple method for computing accurate density-dependent dispersion coefficients is presented, based on a disjoint description of atoms in a molecule, which gives mean absolute errors in the C(6) coefficients for 90 complexes below 10%.
Abstract: A simple method for computing accurate density-dependent dispersion coefficients is presented. The dispersion coefficients are modeled by a generalized gradient-type approximation to Becke and Johnson's exchange hole dipole moment formalism. Our most cost-effective variant, based on a disjoint description of atoms in a molecule, gives mean absolute errors in the C6 coefficients for 90 complexes below 10%. The inclusion of the missing long-range van der Waals interactions in density functionals using the derived coefficients in a pair wise correction leads to highly accurate typical noncovalent interaction energies.

273 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Abstract: The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

32,589 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This Account compared the performance of the M06-class functionals and one M05-class functional (M05-2X) to that of some popular functionals for diverse databases and their performance on several difficult cases.
Abstract: Although density functional theory is widely used in the computational chemistry community, the most popular density functional, B3LYP, has some serious shortcomings: (i) it is better for main-group chemistry than for transition metals; (ii) it systematically underestimates reaction barrier heights; (iii) it is inaccurate for interactions dominated by medium-range correlation energy, such as van der Waals attraction, aromatic−aromatic stacking, and alkane isomerization energies. We have developed a variety of databases for testing and designing new density functionals. We used these data to design new density functionals, called M06-class (and, earlier, M05-class) functionals, for which we enforced some fundamental exact constraints such as the uniform-electron-gas limit and the absence of self-correlation energy. Our M06-class functionals depend on spin-up and spin-down electron densities (i.e., spin densities), spin density gradients, spin kinetic energy densities, and, for nonlocal (also called hybrid)...

5,876 citations

Journal ArticleDOI
TL;DR: Proton-coupled electron transfer is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues and several are reviewed.
Abstract: ▪ Abstract Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several are...

2,182 citations

Journal ArticleDOI
TL;DR: To model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region and an MM treatment for the surroundings, enabling the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Abstract: Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.

2,172 citations