scispace - formally typeset
Search or ask a question
Author

Clemens Burda

Bio: Clemens Burda is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Quantum dot & Femtosecond. The author has an hindex of 71, co-authored 230 publications receiving 27468 citations. Previous affiliations of Clemens Burda include Xi'an Jiaotong University & Kent State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: In this paper, the direct amination of 6−10-nm-sized titania particles was used to synthesize catalytically active TiO2-Nx nanocrystals that absorb well into the visible region up to 600 nm.
Abstract: TiO2 - xNx nanoparticles were prepared by employing the direct amination of 6−10-nm-sized titania particles. Doping on the nanometer scale led to an enhanced nitrogen concentration of up to 8%, compared to ≤2% in thin films and micrometer-scale TiO2 powders. The synthesized TiO2 - xNx nanocrystals are catalytically active and absorb well into the visible region up to 600 nm, thus exemplifying the use of a nanostructure-based synthesis as a means of producing novel photocatalytic materials.

1,214 citations

Journal ArticleDOI
TL;DR: The synthesized C, N, and S-doped titania nanomaterials show an increased electron density of states above the valence band of TiO2, which explains the red-shifted light absorption of these potential photocatalysts and simultaneously suggests a lowered potential as photooxidants compared to Degussa P25 TiO 2.
Abstract: The origin of the visible-light absorption of main-group element (C, N, S) doped TiO2 nanostructures is investigated via diffuse reflectance and valence band X-ray photoelectron spectroscopy. The synthesized C-, N-, and S-doped titania nanomaterials show an increased electron density of states above the valence band of TiO2, which explains the red-shifted light absorption of these potential photocatalysts and simultaneously suggests a lowered potential as photooxidants compared to Degussa P25 TiO2.

1,095 citations

Journal ArticleDOI
TL;DR: This critical review will present the role of nanoparticles (NPs) in the directions that are vital to the new field of nanomedicine, including imaging and drug delivery, and review recent advances in major NP based biomedical applications.
Abstract: This critical review will present the role of nanoparticles (NPs) in the directions that are vital to the new field of nanomedicine, including imaging and drug delivery. We reflect on the physical properties that make NPs advantageous for in vivo efficacy, and review recent advances in major NP based biomedical applications. Critical questions of transport, uptake, and clearance will be discussed and illustrated through the success and opportunities of NP imaging and therapy on a photodynamic therapy (PDT) based NP system that has been developed in our lab over the past decade (540 references).

925 citations

Journal ArticleDOI
TL;DR: It is found consistently that under ambient conditions the copper deficient Cu(1.97)S (djurleite) is more stable than Cu(2) S (chalcocite) and this may be the reason behind the traditionally known instability of the bulk Cu( 2)S/CdS interface.
Abstract: Cu2−xS (x = 1, 0.2, 0.03) nanocrystals were synthesized with three different chemical methods: sonoelectrochemical, hydrothermal, and solventless thermolysis methods in order to compare their common optical and structural properties. The compositions of the Cu2−xS nanocrystals were varied from CuS (covellite) to Cu1.97S (djurleite) through adjusting the reduction potential in the sonoelectrochemical method, adjusting the pH value in the hydrothermal method and by choosing different precursor pretreatments in the solventless thermolysis approach, respectively. The crystallinity and morphology of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), which shows that most of them might be of pure stoichiometries but some of them are mixtures. The obtained XRDs were studied in comparison to the XRD patterns of previously reported Cu2−xS. We found consistently that under ambient conditions the copper deficient Cu1.97S (djurleite) is more stable than Cu2S (chalco...

870 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Abstract: Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.

6,352 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations