scispace - formally typeset
Search or ask a question
Author

Clemens Sommer

Bio: Clemens Sommer is an academic researcher from University of Mainz. The author has contributed to research in topics: AMPA receptor & Receptor. The author has an hindex of 41, co-authored 155 publications receiving 7380 citations. Previous affiliations of Clemens Sommer include University of Ulm & Heidelberg University.


Papers
More filters
Journal ArticleDOI
TL;DR: Treg cells are major cerebroprotective modulators of postischemic inflammatory brain damage targeting multiple inflammatory pathways, and IL-10 signaling is essential for their immunomodulatory effect.
Abstract: Systemic and local inflammatory processes have a key, mainly detrimental role in the pathophysiology of ischemic stroke. Currently, little is known about endogenous counterregulatory immune mechanisms. We examined the role of the key immunomodulators CD4(+)CD25(+) forkhead box P3 (Foxp3)(+) regulatory T lymphocytes (T(reg) cells), after experimental brain ischemia. Depletion of T(reg) cells profoundly increased delayed brain damage and deteriorated functional outcome. Absence of T(reg) cells augmented postischemic activation of resident and invading inflammatory cells including microglia and T cells, the main sources of deleterious cerebral tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), respectively. Early antagonization of TNF-alpha and delayed neutralization of IFN-gamma prevented infarct growth in T(reg) cell-depleted mice. Intracerebral interleukin-10 (IL-10) substitution abrogated the cytokine overexpression after T(reg) cell depletion and prevented secondary infarct growth, whereas transfer of IL-10-deficient T(reg) cells in an adoptive transfer model was ineffective. In conclusion, T(reg) cells are major cerebroprotective modulators of postischemic inflammatory brain damage targeting multiple inflammatory pathways. IL-10 signaling is essential for their immunomodulatory effect.

888 citations

Journal ArticleDOI
TL;DR: G-CSF markedly improved long-term behavioral outcome after cortical ischemia, while stimulating neural progenitor response in vivo, providing a link to functional recovery, and is proposed as a potential new drug for stroke and neurodegenerative diseases.
Abstract: G-CSF is a potent hematopoietic factor that enhances survival and drives differentiation of myeloid lineage cells, resulting in the generation of neutrophilic granulocytes. Here, we show that G-CSF passes the intact blood-brain barrier and reduces infarct volume in 2 different rat models of acute stroke. G-CSF displays strong anti-apoptotic activity in mature neurons and activates multiple cell survival pathways. Both G-CSF and its receptor are widely expressed by neurons in the CNS, and their expression is induced by ischemia, which suggests an autocrine protective signaling mechanism. Surprisingly, the G-CSF receptor was also expressed by adult neural stem cells, and G-CSF induced neuronal differentiation in vitro. G-CSF markedly improved long-term behavioral outcome after cortical ischemia, while stimulating neural progenitor response in vivo, providing a link to functional recovery. Thus, G-CSF is an endogenous ligand in the CNS that has a dual activity beneficial both in counteracting acute neuronal degeneration and contributing to long-term plasticity after cerebral ischemia. We therefore propose G-CSF as a potential new drug for stroke and neurodegenerative diseases.

652 citations

Journal ArticleDOI
01 Mar 2003-Stroke
TL;DR: G-CSF achieved a significant neuroprotective effect in cell culture and after intravenous administration after stroke, and increased STAT3 expression in the penumbra of G- CSF–treated rats suggests mediation by G-CSFR.
Abstract: Background and Purpose— The potential neuroprotective effect of the granulocyte colony–stimulating factor (G-CSF) after glutamate-induced excitotoxicity in cell culture and after focal cerebral ischemia in rats was studied. We hypothesized the existence of the G-CSF receptor (G-CSFR) as a main G-CSF effector on neurons, and immunohistochemistry, immunoblotting, and polymerase chain reaction were performed. The G-CSFR–mediated action was studied by activation of signal transducer(s) and activator(s) of transcription-3 (STAT3) in the periphery of the infarction. Methods— Neuroprotection of various G-CSF concentrations on glutamate-induced excitotoxicity was studied in cell culture. In vivo, ischemia was induced by use of a suture occlusion model of the middle cerebral artery (90-minute occlusion) in the rat. Thirty minutes after the induction of ischemia, the animals (n=12 per group) received G-CSF at 60 μg/kg body wt IV for 90 minutes or vehicle (saline). Infarct volume was calculated on the basis of 2,3,5...

410 citations

Journal ArticleDOI
01 Jul 2007-Stroke
TL;DR: The role of BDNF is consolidated as a modulator of neurogenesis in the brain and as an enhancer of long-term functional neurological outcome after cerebral ischemia.
Abstract: Background and Purpose— The discovery of spontaneous neuronal replacement in the adult brain has shifted experimental stroke therapies toward a combined approach of preventing neuronal cell death a...

397 citations

Journal ArticleDOI
TL;DR: The two models mimicking human stroke most closely are various embolic stroke models and spontaneous stroke models, which more closely mimics the therapeutic situation of mechanical thrombectomy which is expected to be increasingly applied to stroke patients.
Abstract: The vast majority of cerebral stroke cases are caused by transient or permanent occlusion of a cerebral blood vessel (“ischemic stroke”) eventually leading to brain infarction. The final infarct size and the neurological outcome depend on a multitude of factors such as the duration and severity of ischemia, the existence of collateral systems and an adequate systemic blood pressure, etiology and localization of the infarct, but also on age, sex, comorbidities with the respective multimedication and genetic background. Thus, ischemic stroke is a highly complex and heterogeneous disorder. It is immediately obvious that experimental models of stroke can cover only individual specific aspects of this multifaceted disease. A basic understanding of the principal molecular pathways induced by ischemia-like conditions comes already from in vitro studies. One of the most frequently used in vivo models in stroke research is the endovascular suture or filament model in rodents with occlusion of the middle cerebral artery (MCA), which causes reproducible infarcts in the MCA territory. It does not require craniectomy and allows reperfusion by withdrawal of the occluding filament. Although promptly restored blood flow is far from the pathophysiology of spontaneous human stroke, it more closely mimics the therapeutic situation of mechanical thrombectomy which is expected to be increasingly applied to stroke patients. Direct transient or permanent occlusion of cerebral arteries represents an alternative approach but requires craniectomy. Application of endothelin-1, a potent vasoconstrictor, allows induction of transient focal ischemia in nearly any brain region and is frequently used to model lacunar stroke. Circumscribed and highly reproducible cortical lesions are characteristic of photothrombotic stroke where infarcts are induced by photoactivation of a systemically given dye through the intact skull. The major shortcoming of this model is near complete lack of a penumbra. The two models mimicking human stroke most closely are various embolic stroke models and spontaneous stroke models. Closeness to reality has its price and goes along with higher variability of infarct size and location as well as unpredictable stroke onset in spontaneous models versus unpredictable reperfusion in embolic clot models.

381 citations


Cited by
More filters
Journal ArticleDOI
22 Feb 2008-Cell
TL;DR: The factors that regulate proliferation and fate determination of adult neural stem cells are discussed and the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease is addressed.

2,911 citations

Journal ArticleDOI
TL;DR: The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors as mentioned in this paper.
Abstract: The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.

2,908 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea as discussed by the authors.
Abstract: Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Ischemia-reperfusion injury is also a major challenge during organ transplantation and cardiothoracic, vascular and general surgery. An imbalance in metabolic supply and demand within the ischemic organ results in profound tissue hypoxia and microvascular dysfunction. Subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Recent advances in understanding the molecular and immunological consequences of ischemia and reperfusion may lead to innovative therapeutic strategies for treating patients with ischemia and reperfusion-associated tissue inflammation and organ dysfunction.

2,368 citations