scispace - formally typeset
Search or ask a question
Author

Clément Hébert

Bio: Clément Hébert is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Diamond & Microelectrode. The author has an hindex of 15, co-authored 31 publications receiving 778 citations. Previous affiliations of Clément Hébert include Joseph Fourier University & Autonomous University of Barcelona.

Papers
More filters
Journal ArticleDOI
TL;DR: Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.
Abstract: Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene-based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.

115 citations

Journal ArticleDOI
TL;DR: 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension.

110 citations

Journal ArticleDOI
TL;DR: This work uses flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrates that gSGFETS are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth.
Abstract: Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.

99 citations

Journal ArticleDOI
TL;DR: In this article, the operation of solution-gated field-effect transistors (SGFETs) and characterizing their performance in saline solution were discussed and compared with the performance of state-of-the-art neural technologies.
Abstract: Brain–computer interfaces and neural prostheses based on the detection of electrocorticography (ECoG) signals are rapidly growing fields of research. Several technologies are currently competing to be the first to reach the market; however, none of them fulfill yet all the requirements of the ideal interface with neurons. Thanks to its biocompatibility, low dimensionality, mechanical flexibility, and electronic properties, graphene is one of the most promising material candidates for neural interfacing. After discussing the operation of graphene solution-gated field-effect transistors (SGFET) and characterizing their performance in saline solution, it is reported here that this technology is suitable for μ-ECoG recordings through studies of spontaneous slow-wave activity, sensory-evoked responses on the visual and auditory cortices, and synchronous activity in a rat model of epilepsy. An in-depth comparison of the signal-to-noise ratio of graphene SGFETs with that of platinum black electrodes confirms that graphene SGFET technology is approaching the performance of state-of-the art neural technologies.

92 citations

Journal ArticleDOI
TL;DR: The method has been applied to measure thermal properties of low stress silicon nitride and polycrystalline diamond membranes with thickness ranging from 100 nm to 400 nm and support a significant grain size effect on the thermal transport.
Abstract: A suspended system for measuring the thermal properties of membranes is presented. The sensitive thermal measurement is based on the 3ω dynamic method coupled to a Volklein geometry. The device obtained using micro-machining processes allows the measurement of the in-plane thermal conductivity of a membrane with a sensitivity of less than 10 nW/K (+/−5 × 10−3 Wm−1 K−1 at room temperature) and a very high resolution (ΔK/K = 10−3). A transducer (heater/thermometer) centered on the membrane is used to create an oscillation of the heat flux and to measure the temperature oscillation at the third harmonic using a Wheatstone bridge set-up. Power as low as 0.1 nW has been measured at room temperature. The method has been applied to measure thermal properties of low stress silicon nitride and polycrystalline diamond membranes with thickness ranging from 100 nm to 400 nm. The thermal conductivity measured on the polycrystalline diamond membrane support a significant grain size effect on the thermal transport.

66 citations


Cited by
More filters
08 Jul 2010
TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Abstract: Energy storage devices that can deliver high powers have many applications, including hybrid vehicles and renewable energy. Much research has focused on increasing the power output of lithium batteries by reducing lithium-ion diffusion distances, but outputs remain far below those of electrochemical capacitors and below the levels required for many applications. Here, we report an alternative approach based on the redox reactions of functional groups on the surfaces of carbon nanotubes. Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes. The electrode, which is several micrometres thick, can store lithium up to a reversible gravimetric capacity of approximately 200 mA h g(-1)(electrode) while also delivering 100 kW kg(electrode)(-1) of power and providing lifetimes in excess of thousands of cycles, both of which are comparable to electrochemical capacitor electrodes. A device using the nanotube electrode as the positive electrode and lithium titanium oxide as a negative electrode had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 times higher than conventional lithium-ion batteries.

953 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the fundamental properties and highlights recent progress and achievements in the growth of boron-doped (metal-like) and nitrogen and phosphorus- doped (semi-conducting) diamond and hydrogen-terminated undoped diamond electrodes.
Abstract: Conductive diamond possesses unique features as compared to other solid electrodes, such as a wide electrochemical potential window, a low and stable background current, relatively rapid rates of electron-transfer for soluble redox systems without conventional pretreatment, long-term responses, stability, biocompatibility, and a rich surface chemistry. Conductive diamond microcrystalline and nanocrystalline films, structures and particles have been prepared using a variety of approaches. Given these highly desirable attributes, conductive diamond has found extensive use as an enabling electrode across a variety of fields encompassing chemical and biochemical sensing, environmental degradation, electrosynthesis, electrocatalysis, and energy storage and conversion. This review provides an overview of the fundamental properties and highlights recent progress and achievements in the growth of boron-doped (metal-like) and nitrogen and phosphorus-doped (semi-conducting) diamond and hydrogen-terminated undoped diamond electrodes. Applications in electroanalysis, environmental degradation, electrosynthesis electrocatalysis, and electrochemical energy storage are also discussed. Diamond electrochemical devices utilizing micro-scale, ultramicro-scale, and nano-scale electrodes as well as their counterpart arrays are viewed. The challenges and future research directions of conductive diamond are discussed and outlined. This review will be important and informative for chemists, biochemists, physicists, materials scientists, and engineers engaged in the use of these novel forms of carbon.

282 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the current state-of-the-art of 2D-materials-based solar photovoltaics is presented here so that the recent advances of2D materials for solar cells can be employed for formulating the future roadmap of various photov Holtaic technologies.
Abstract: 2D materials have attracted considerable attention due to their exciting optical and electronic properties, and demonstrate immense potential for next-generation solar cells and other optoelectronic devices With the scaling trends in photovoltaics moving toward thinner active materials, the atomically thin bodies and high flexibility of 2D materials make them the obvious choice for integration with future-generation photovoltaic technology Not only can graphene, with its high transparency and conductivity, be used as the electrodes in solar cells, but also its ambipolar electrical transport enables it to serve as both the anode and the cathode 2D materials beyond graphene, such as transition-metal dichalcogenides, are direct-bandgap semiconductors at the monolayer level, and they can be used as the active layer in ultrathin flexible solar cells However, since no 2D material has been featured in the roadmap of standard photovoltaic technologies, a proper synergy is still lacking between the recently growing 2D community and the conventional solar community A comprehensive review on the current state-of-the-art of 2D-materials-based solar photovoltaics is presented here so that the recent advances of 2D materials for solar cells can be employed for formulating the future roadmap of various photovoltaic technologies

258 citations

Journal ArticleDOI
TL;DR: The overall recent progress made in developing MoS2 based flexible FETs, OLED displays, nonvolatile memory (NVM) devices, piezoelectric nanogenerators (PNGs), and sensors for wearable electronic and optoelectronic devices is discussed.
Abstract: Flexible, stretchable, and bendable materials, including inorganic semiconductors, organic polymers, graphene, and transition metal dichalcogenides (TMDs), are attracting great attention in such areas as wearable electronics, biomedical technologies, foldable displays, and wearable point-of-care biosensors for healthcare. Among a broad range of layered TMDs, atomically thin layered molybdenum disulfide (MoS2) has been of particular interest, due to its exceptional electronic properties, including tunable bandgap and charge carrier mobility. MoS2 atomic layers can be used as a channel or a gate dielectric for fabricating atomically thin field-effect transistors (FETs) for electronic and optoelectronic devices. This review briefly introduces the processing and spectroscopic characterization of large-area MoS2 atomically thin layers. The review summarizes the different strategies in enhancing the charge carrier mobility and switching speed of MoS2 FETs by integrating high-κ dielectrics, encapsulating layers, and other 2D van der Waals layered materials into flexible MoS2 device structures. The photoluminescence (PL) of MoS2 atomic layers has, after chemical treatment, been dramatically improved to near-unity quantum yield. Ultraflexible and wearable active-matrix organic light-emitting diode (AM-OLED) displays and wafer-scale flexible resistive random-access memory (RRAM) arrays have been assembled using flexible MoS2 transistors. The review discusses the overall recent progress made in developing MoS2 based flexible FETs, OLED displays, nonvolatile memory (NVM) devices, piezoelectric nanogenerators (PNGs), and sensors for wearable electronic and optoelectronic devices. Finally, it outlines the perspectives and tremendous opportunities offered by a large family of atomically thin-layered TMDs.

241 citations

Journal ArticleDOI
01 Jan 2017-Carbon
TL;DR: In this paper, a composite of single-wall carbon nanotubes (SWCNT) with diamond nanoparticles and a SWCNT paper coated with nanocrystalline diamond films is studied.

221 citations