scispace - formally typeset
Search or ask a question
Author

Clément Nizak

Bio: Clément Nizak is an academic researcher from PSL Research University. The author has contributed to research in topics: Phage display & Golgi apparatus. The author has an hindex of 18, co-authored 32 publications receiving 1359 citations. Previous affiliations of Clément Nizak include Rockefeller University & École Normale Supérieure.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that two distinct DNA nanomachines can be used simultaneously to map pH gradients along two different but intersecting cellular entry pathways inside the same cell.
Abstract: DNA is a versatile scaffold for molecular sensing in living cells, and various cellular applications of DNA nanodevices have been demonstrated. However, the simultaneous use of different DNA nanodevices within the same living cell remains a challenge. Here, we show that two distinct DNA nanomachines can be used simultaneously to map pH gradients along two different but intersecting cellular entry pathways. The two nanomachines, which are molecularly programmed to enter cells via different pathways, can map pH changes within well-defined subcellular environments along both pathways inside the same cell. We applied these nanomachines to probe the pH of early endosomes and the trans-Golgi network, in real time. When delivered either sequentially or simultaneously, both nanomachines localized into and independently captured the pH of the organelles for which they were designed. The successful functioning of DNA nanodevices within living systems has important implications for sensing and therapies in a diverse range of contexts.

290 citations

Journal ArticleDOI
TL;DR: A simple microfluidic system, DropMap, in which single cells are compartmentalized in tens of thousands of 40-pL droplets and analyzed in two-dimensional droplet arrays using a fluorescence relocation-based immunoassay will not only enable immune monitoring and optimization of immunization and vaccination protocols but also potentiate antibody screening.
Abstract: Studies of the dynamics of the antibody-mediated immune response have been hampered by the absence of quantitative, high-throughput systems to analyze individual antibody-secreting cells. Here we describe a simple microfluidic system, DropMap, in which single cells are compartmentalized in tens of thousands of 40-pL droplets and analyzed in two-dimensional droplet arrays using a fluorescence relocation-based immunoassay. Using DropMap, we characterized antibody-secreting cells in mice immunized with tetanus toxoid (TT) over a 7-week protocol, simultaneously analyzing the secretion rate and affinity of IgG from over 0.5 million individual cells enriched from spleen and bone marrow. Immunization resulted in dramatic increases in the range of both single-cell secretion rates and affinities, which spanned at maximum 3 and 4 logs, respectively. We observed differences over time in dynamics of secretion rate and affinity within and between anatomical compartments. This system will not only enable immune monitoring and optimization of immunization and vaccination protocols but also potentiate antibody screening.

171 citations

Journal ArticleDOI
01 Apr 2006-Traffic
TL;DR: It is reported that reduction in the expression of Rab6 isoform using specific small interfering RNA reveals noticeable differences in the Rab 6A and Rab6A′ biological functions, and suggests a novel role for Rab6 a′ as the major Rab 6 isoform regulating previously described Rab6‐dependent transport pathways.
Abstract: The closely related Rab6 isoforms, Rab6A and Rab6A’, have been shown to regulate vesicular trafficking within the Golgi and post-Golgi compartments, but studies using dominant active or negative mutant suggested conflicting models. Here, we report that reduction in the expression of Rab6 isoform using specific small interfering RNA reveals noticeable differences in the Rab6A and Rab6A’ biological functions. Surprisingly, Rab6A seems to be largely dispensable in membrane trafficking events, whereas knocking down the expression of Rab6A’ hampers the intracellular transport of the retrograde cargo marker, the Shiga Toxin B-subunit along the endocytic pathway, and causes defects in Golgiassociated protein recycling through the endoplasmic reticulum. We also showed that Rab6A’ is required for cell cycle progression through mitosis and identify Ile 62 as a key residue for uncoupling Rab6A’ functions in mitosis and retrograde trafficking. Thus, our work shows that Rab6A and Rab6A’ perform different functions within the cell and suggests a novel role for Rab6A’ as the major Rab6 isoform regulating previously described Rab6dependent transport pathways.

137 citations

Journal ArticleDOI
11 Aug 2010-PLOS ONE
TL;DR: Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene, suggesting that determinant of virulence may well be originally selected and further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.
Abstract: To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.

130 citations

Journal ArticleDOI
TL;DR: This work presents a method for high-throughput, single-cell screening of IgG-secreting primary cells to characterize antibody binding to soluble and membrane-bound antigens, and generated 77 recombinant antibodies from the identified sequences.
Abstract: Mining the antibody repertoire of plasma cells and plasmablasts could enable the discovery of useful antibodies for therapeutic or research purposes1. We present a method for high-throughput, single-cell screening of IgG-secreting primary cells to characterize antibody binding to soluble and membrane-bound antigens. CelliGO is a droplet microfluidics system that combines high-throughput screening for IgG activity, using fluorescence-based in-droplet single-cell bioassays2, with sequencing of paired antibody V genes, using in-droplet single-cell barcoded reverse transcription. We analyzed IgG repertoire diversity, clonal expansion and somatic hypermutation in cells from mice immunized with a vaccine target, a multifunctional enzyme or a membrane-bound cancer target. Immunization with these antigens yielded 100–1,000 IgG sequences per mouse. We generated 77 recombinant antibodies from the identified sequences and found that 93% recognized the soluble antigen and 14% the membrane antigen. The platform also allowed recovery of ~450–900 IgG sequences from ~2,200 IgG-secreting activated human memory B cells, activated ex vivo, demonstrating its versatility.

130 citations


Cited by
More filters
Journal ArticleDOI
15 Feb 2008-Science
TL;DR: This article performed a large-scale small interfering RNA screen to identify host factors required by HIV-1 and identified more than 250 HIV-dependency factors (HDFs), which participate in a broad array of cellular functions and implicate new pathways in the viral life cycle.
Abstract: HIV-1 exploits multiple host proteins during infection. We performed a large-scale small interfering RNA screen to identify host factors required by HIV-1 and identified more than 250 HIV-dependency factors (HDFs). These proteins participate in a broad array of cellular functions and implicate new pathways in the viral life cycle. Further analysis revealed previously unknown roles for retrograde Golgi transport proteins (Rab6 and Vps53) in viral entry, a karyopherin (TNPO3) in viral integration, and the Mediator complex (Med28) in viral transcription. Transcriptional analysis revealed that HDF genes were enriched for high expression in immune cells, suggesting that viruses evolve in host cells that optimally perform the functions required for their life cycle. This effort illustrates the power with which RNA interference and forward genetics can be used to expose the dependencies of human pathogens such as HIV, and in so doing identify potential targets for therapy.

1,348 citations

Journal ArticleDOI
TL;DR: This review discusses how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane.
Abstract: Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.

1,328 citations

01 Oct 2007
TL;DR: A large-scale small interfering RNA screen was performed to identify host factors required by HIV-1 and more than 250 HIV-dependency factors (HDFs) were identified, suggesting that viruses evolve in host cells that optimally perform the functions required for their life cycle.

1,151 citations

Journal ArticleDOI
Hennie R. Hoogenboom1
TL;DR: The first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Abstract: During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.

1,057 citations

Journal ArticleDOI
TL;DR: It is demonstrated that intravenously injected DNA nanorobots deliver thrombin specifically to tumor-associated blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth.
Abstract: Nanoscale robots have potential as intelligent drug delivery systems that respond to molecular triggers. Using DNA origami we constructed an autonomous DNA robot programmed to transport payloads and present them specifically in tumors. Our nanorobot is functionalized on the outside with a DNA aptamer that binds nucleolin, a protein specifically expressed on tumor-associated endothelial cells, and the blood coagulation protease thrombin within its inner cavity. The nucleolin-targeting aptamer serves both as a targeting domain and as a molecular trigger for the mechanical opening of the DNA nanorobot. The thrombin inside is thus exposed and activates coagulation at the tumor site. Using tumor-bearing mouse models, we demonstrate that intravenously injected DNA nanorobots deliver thrombin specifically to tumor-associated blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth. The nanorobot proved safe and immunologically inert in mice and Bama miniature pigs. Our data show that DNA nanorobots represent a promising strategy for precise drug delivery in cancer therapy.

936 citations