scispace - formally typeset
Search or ask a question
Author

Clement Zotti

Bio: Clement Zotti is an academic researcher from Université de Sherbrooke. The author has contributed to research in topics: Segmentation & Convolutional neural network. The author has an hindex of 5, co-authored 5 publications receiving 681 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: How far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies is measured, to open the door to highly accurate and fully automatic analysis of cardiac CMRI.
Abstract: Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.

1,056 citations

Journal ArticleDOI
TL;DR: A novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI) is presented, an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy.
Abstract: In this paper, we present a novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI). The proposed model is an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy. Since the shape prior is computed offline only once, the execution of our model is not limited by its calculation. Our system takes as input raw magnetic resonance images, requires no manual preprocessing or image cropping and is trained to segment the endocardium and epicardium of the left ventricle, the endocardium of the right ventricle, as well as the center of the left ventricle. With its multiresolution grid architecture, the network learns both high and low-level features useful to register the shape prior as well as accurately localize the borders of the cardiac regions. Experimental results obtained on the Automatic Cardiac Diagnostic Challenge - Medical Image Computing and Computer Assisted Intervention (ACDC-MICCAI) 2017 dataset show that our model segments multislices CMRI (left and right ventricle contours) in 0.18 s with an average Dice coefficient of ${\text{0.91}}$ and an average 3-D Hausdorff distance of ${\text{9.5}}$ mm.

139 citations

Book ChapterDOI
10 Sep 2017
TL;DR: In this article, the authors proposed a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge.
Abstract: In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac center-of-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv “grid” architecture which can be seen as an extension of the U-Net.

65 citations

Posted Content
TL;DR: A fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge with its embedded shape prior and its loss function tailored to the cardiac anatomy.
Abstract: In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac centerof-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv "grid" architecture which can be seen as an extension of the U-Net. Experimental results reveal that our method can segment the left and right ventricles as well as the myocardium from a 3D MRI cardiac volume in 0.4 second with an average Dice coefficient of 0.90 and an average Hausdorff distance of 10.4 mm.

53 citations

Posted Content
TL;DR: Results reveal that the fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network can segment all three regions of a 3D MRI cardiac volume in $0.4$ second with an average Dice index of £0.90, which is significantly better than state-of-the-art deep learning methods.
Abstract: In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) As opposed to most cardiac segmentation methods which focus on the left ventricle (and especially the left cavity), our method segments both the left ventricular cavity, the left ventricular epicardium, and the right ventricular cavity The novelty of our network lies in its maximum a posteriori loss function, which is specifically designed for the cardiac anatomy Our loss function incorporates the cross-entropy of the predicted labels, the predicted contours, a cardiac shape prior, and an a priori term Our model also includes a cardiac center-of-mass regression module which allows for an automatic shape prior registration Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results) Those features are learned with a multi-resolution conv-deconv "grid" architecture which can be seen as an extension of the U-Net We trained and tested our model on the ACDC MICCAI'17 challenge dataset of 150 patients whose diastolic and systolic images were manually outlined by 2 medical experts Results reveal that our method can segment all three regions of a 3D MRI cardiac volume in $04$ second with an average Dice index of $090$, which is significantly better than state-of-the-art deep learning methods

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: nnU-Net as mentioned in this paper is a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task.
Abstract: Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

2,040 citations

Journal ArticleDOI
TL;DR: How far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies is measured, to open the door to highly accurate and fully automatic analysis of cardiac CMRI.
Abstract: Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.

1,056 citations

Journal ArticleDOI
TL;DR: An automated analysis method based on a fully convolutional network achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures.
Abstract: Cardiovascular resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images. Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV). By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated measurement and manual measurement is 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric is 0.93 for the LA cavity (2-chamber view), 0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable to human inter-observer variability. We show that an automated method achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures.

512 citations

Journal ArticleDOI
TL;DR: Without manual tuning, nnU-Net surpasses most specialised deep learning pipelines in 19 public international competitions and sets a new state of the art in the majority of the 49 tasks, demonstrating a vast hidden potential in the systematic adaptation of deep learning methods to different datasets.
Abstract: Biomedical imaging is a driver of scientific discovery and core component of medical care, currently stimulated by the field of deep learning. While semantic segmentation algorithms enable 3D image analysis and quantification in many applications, the design of respective specialised solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We propose nnU-Net, a deep learning framework that condenses the current domain knowledge and autonomously takes the key decisions required to transfer a basic architecture to different datasets and segmentation tasks. Without manual tuning, nnU-Net surpasses most specialised deep learning pipelines in 19 public international competitions and sets a new state of the art in the majority of the 49 tasks. The results demonstrate a vast hidden potential in the systematic adaptation of deep learning methods to different datasets. We make nnU-Net publicly available as an open-source tool that can effectively be used out-of-the-box, rendering state of the art segmentation accessible to non-experts and catalyzing scientific progress as a framework for automated method design.

314 citations