scispace - formally typeset
Search or ask a question
Author

Cliff Thomas

Bio: Cliff Thomas is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: National Ignition Facility & Hohlraum. The author has an hindex of 42, co-authored 99 publications receiving 4640 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Miller et al. as discussed by the authors proposed a point design for the initial ignition campaign on the National Ignition Facility (NIF) using D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu.
Abstract: Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and...

534 citations

Journal ArticleDOI
M. J. Edwards1, P. K. Patel, J. D. Lindl1, L. J. Atherton, Siegfried Glenzer, S. W. Haan, J. D. Kilkenny, O. L. Landen, Edward I. Moses, A. Nikroo, R. D. Petrasso, T. C. Sangster, P. T. Springer, Steven H. Batha, R. Benedetti, L. A. Bernstein, Riccardo Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, J. A. Caggiano, D. A. Callahan, P. M. Celliers, C. J. Cerjan, K. C. Chen, Daniel Clark, Gilbert Collins, E. L. Dewald, Laurent Divol, S. N. Dixit, Tilo Doeppner, D. H. Edgell, James E. Fair, Michael Farrell, R. J. Fortner, Johan Frenje, M. Gatu Johnson, E. M. Giraldez, V. Yu. Glebov, Gary Grim, B. A. Hammel, A. V. Hamza, D. R. Harding, S. P. Hatchett, N. Hein, Hans W. Herrmann, Damien Hicks, D. E. Hinkel, M. Hoppe, W. W. Hsing, Nobuhiko Izumi, B. Jacoby, O. S. Jones, Daniel H. Kalantar, Robert L. Kauffman, John Kline, J. P. Knauer, J. A. Koch, B. J. Kozioziemski, G. A. Kyrala, K. N. LaFortune, S. Le Pape, R. J. Leeper, R. A. Lerche, T. Ma, B. J. MacGowan, A. J. Mackinnon, Andrew MacPhee, Evan Mapoles, M. M. Marinak, M. Mauldin, P. W. McKenty, M. Meezan, Pierre Michel, Jose Milovich, J. D. Moody, Matthew Moran, D. H. Munro, C. L. Olson, Kathy Opachich, Art Pak, T. G. Parham, H.-S. Park, Joseph Ralph, Sean Regan, Bruce Remington, H. G. Rinderknecht, Harry Robey, M. D. Rosen, Steven Ross, Jay D. Salmonson, J. D. Sater, D. H. Schneider, Fredrick Seguin, Scott Sepke, D. A. Shaughnessy, V. A. Smalyuk, Brian Spears, Christian Stoeckl, Wolfgang Stoeffl, L. J. Suter, Cliff Thomas, R. Tommasini, Richard Town, S. V. Weber, Paul J. Wegner, K. Widman, Mark D. Wilke, Doug Wilson, Charles Yeamans, Alex Zylstra 
TL;DR: In this paper, a low-Z capsule filled with deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5-10 (fusion yield/input laser energy).
Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm3 with an areal density (ρR) of ∼1.5 g/cm2, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm2, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

271 citations

Journal ArticleDOI
TL;DR: A new full-scale, three-dimensional quantitative model has been developed for crossed-beam energy transfer, allowing calculations of the propagation and coupling of multiple laser beams and their associated plasma waves in ignition hohlraums.
Abstract: Radiative hydrodynamics simulations of ignition experiments show that energy transfer between crossing laser beams allows tuning of the implosion symmetry. A new full-scale, three-dimensional quantitative model has been developed for crossed-beam energy transfer, allowing calculations of the propagation and coupling of multiple laser beams and their associated plasma waves in ignition hohlraums. This model has been implemented in a radiative-hydrodynamics code, demonstrating control of the implosion symmetry by a wavelength separation between cones of laser beams.

237 citations

26 Apr 2010
TL;DR: Miller et al. as mentioned in this paper proposed a cache performance optimization campaign at the National Ignition Facility (NFI) to increase the probability of ignition by correcting for residual uncertainties in the implosion and hohlraum physics used in their radiation-hydrodynamic computational models.
Abstract: Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown ...

141 citations


Cited by
More filters
Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: In this article, the authors report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a high-foot implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion.
Abstract: Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

733 citations

Journal ArticleDOI
TL;DR: In this article, Zhou et al. presented the initial condition dependence of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) mixing layers, and introduced parameters that are used to evaluate the level of mixedness and mixed mass within the layers.

606 citations

Journal ArticleDOI
TL;DR: Miller et al. as discussed by the authors proposed a point design for the initial ignition campaign on the National Ignition Facility (NIF) using D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu.
Abstract: Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and...

534 citations

Journal ArticleDOI
TL;DR: The National Ignition Campaign (NIC) as mentioned in this paper was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the NIF in 2009.
Abstract: The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.

509 citations

Journal ArticleDOI
TL;DR: The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers as mentioned in this paper.
Abstract: The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.

494 citations