scispace - formally typeset
Search or ask a question
Author

Clifford D.L. Folmes

Bio: Clifford D.L. Folmes is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Induced pluripotent stem cell & Stem cell. The author has an hindex of 28, co-authored 44 publications receiving 4679 citations. Previous affiliations of Clifford D.L. Folmes include University of Alberta & University of Winnipeg.

Papers
More filters
Journal ArticleDOI
TL;DR: The regulation of myocardial fatty acid beta-oxidation is reviewed and how alterations in fatty acid Beta-Oxidation can contribute to heart disease is discussed.
Abstract: There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the β-oxidation of long-chain fatty acids. The control of fatty acid β-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via β-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and β-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid β-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid β-oxidation and how alterations in fatty acid β-oxidation can contribute to heart disease. The implications of inhibiting fatty acid β-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.

1,675 citations

Journal ArticleDOI
TL;DR: The energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency, and metaboproteomics resolved upregulated gly colytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination.

879 citations

Journal ArticleDOI
TL;DR: Recent progress is covered establishing an emerging relationship between stem cell metabolism and cell fate control, which offers a potential target for controlling tissue homeostasis and regeneration in aging and disease.

571 citations

Journal ArticleDOI
TL;DR: Optimizing cardiac energy metabolism in obese subjects may be one approach to preventing and treating cardiac dysfunction that can develop in this population.
Abstract: Obesity results in marked alterations in cardiac energy metabolism, with a prominent effect being an increase in fatty acid uptake and oxidation by the heart. Obesity also results in dramatic changes in the release of adipokines, such as leptin and adiponectin, both of which have emerged as important regulators of cardiac energy metabolism. The link among obesity, cardiovascular disease, lipid metabolism, and adipokine signaling is complex and not well understood. However, optimizing cardiac energy metabolism in obese subjects may be one approach to preventing and treating cardiac dysfunction that can develop in this population. This review discusses what is presently known about the effects of obesity and the impact adipokines have on cardiac energy metabolism and insulin signaling. The clinical implications of obesity and energy metabolism on cardiac disease are also discussed.

265 citations

Journal ArticleDOI
TL;DR: It is demonstrated that 2-DG impairs oxidative phosphorylation and significantly reduces 13C-labeled Krebs cycle metabolites and intracellular ATP levels, and that glycolytic stimulation is not required for M2 macrophage differentiation as long as oxidative phosphate remains active.

194 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: How AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology is discussed.
Abstract: Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.

1,873 citations

Journal ArticleDOI
TL;DR: The regulation of myocardial fatty acid beta-oxidation is reviewed and how alterations in fatty acid Beta-Oxidation can contribute to heart disease is discussed.
Abstract: There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the β-oxidation of long-chain fatty acids. The control of fatty acid β-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via β-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and β-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid β-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid β-oxidation and how alterations in fatty acid β-oxidation can contribute to heart disease. The implications of inhibiting fatty acid β-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.

1,675 citations

Journal ArticleDOI
TL;DR: In this large, community-based sample, increased body-mass index was associated with an increased risk of heart failure and strategies to promote optimal body weight may reduce the population burden ofheart failure.

1,388 citations

Journal Article
TL;DR: Why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease are detailed.
Abstract: Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.

1,323 citations