scispace - formally typeset
Search or ask a question
Author

Cole C Darrow

Bio: Cole C Darrow is an academic researcher from Duke University. The author has contributed to research in topics: Glycolysis & Red blood cell. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: The ability of RBCs to adapt to the metabolic environment via differential control of these metabolites is impaired in the face of enzymopathies [pyruvate kinase deficiency; glucose-6-phosphate dehydrogenase (G6PD) deficiency], blood banking, diabetes mellitus, COVID-19 or sepsis, and sickle cell disease.
Abstract: Metabolic homeostasis in animals depends critically on evolved mechanisms by which red blood cell (RBC) hemoglobin (Hb) senses oxygen (O2) need and responds accordingly. The entwined regulation of ATP production and antioxidant systems within the RBC also exploits Hb-based O2-sensitivity to respond to various physiologic and pathophysiologic stresses. O2 offloading, for example, promotes glycolysis in order to generate both 2,3-DPG (a negative allosteric effector of Hb O2 binding) and ATP. Alternatively, generation of the nicotinamide adenine dinucleotide phosphate (NADPH) critical for reducing systems is favored under the oxidizing conditions of O2 abundance. Dynamic control of ATP not only ensures the functional activity of ion pumps and cellular flexibility, but also contributes to the availability of vasoregulatory ATP that can be exported when necessary, for example in hypoxia or upon RBC deformation in microvessels. RBC ATP export in response to hypoxia or deformation dilates blood vessels in order to promote efficient O2 delivery. The ability of RBCs to adapt to the metabolic environment via differential control of these metabolites is impaired in the face of enzymopathies [pyruvate kinase deficiency; glucose-6-phosphate dehydrogenase (G6PD) deficiency], blood banking, diabetes mellitus, COVID-19 or sepsis, and sickle cell disease. The emerging availability of therapies capable of augmenting RBC ATP, including newly established uses of allosteric effectors and metabolite-specific additive solutions for RBC transfusates, raises the prospect of clinical interventions to optimize or correct RBC function via these metabolite delivery mechanisms.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the authors analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP), which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases.
Abstract: Plasmodium falciparum, a dangerous parasitic agent causing malaria, invades human red blood cells (RBCs), causing hemolysis and microvascular obstruction. These and other pathological processes of malaria patients are due to metabolic and structural changes occurring in uninfected RBCs. In addition, infection activates the production of microparticles (MPs). ATP and byproducts are important extracellular ligands modulating purinergic signaling within the intravascular space. Here, we analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP) of RBCs, which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases. RBCs were cultured with P. falciparum for 24-48 h prior to experiments, from which uninfected RBCs and MPs were purified. On-line luminometry was used to quantify the kinetics of ATP release. Luminometry, colorimetry and radioactive methods were used to assess the rate of eATP hydrolysis by ectonucleotidases. Rates of ATP release and eATP hydrolysis were also evaluated in MPs. Uninfected RBCs challenged by different stimuli displayed a strong and transient activation of ATP release, together with an elevated rate of eATP hydrolysis. MPs contained ATP in their lumen, which was released upon vesicle rupture, and were able to hydrolyze eATP. Results suggest that uninfected RBCs and MPs can act as important determinants of eATP regulation of RBCs during malaria. The comparison of eATP homeostasis in infected RBCs, ui-RBCs, and MPs allowed us to speculate on the impact of P. falciparum infection on intravascular purinergic signaling and the control of the vascular caliber by RBCs.

1 citations

Journal ArticleDOI
TL;DR: In RBCs from septic patients a rapid decrease expression of CD35 membrane protein protecting against complement activation is observed, which could facilitate erythrophagocytosis, contributing to anemia observed in sepsis.
Abstract: Background During sepsis, red blood cell (RBC) deformability is altered. Persistence of these alterations is associated with poor outcome. Activation of the complement system is enhanced during sepsis and RBCs are protected by membrane surface proteins like CD35, CD55 and CD59. In malaria characterized by severe anemia, a study reported links between the modifications of the expression of these RBCs membrane proteins and erythrophagocytosis. We studied the evolution of RBCs deformability and the expression of RBC membrane surface IgG and regulatory proteins in septic patients. Methods By flow cytometry technics, we measured at ICU admission and at day 3–5, the RBC membrane expression of IgG and complement proteins (CD35, 55, 59) in septic patients compared to RBCs from healthy volunteers. Results were expressed in percentage of RBCs positive for the protein. RBC shape was assessed using Pearson's second coefficient of dissymmetry (PCD) on the histogram obtained with a flow cytometer technique. A null value represents a perfect spherical shape. RBC deformability was determined using ektacytometry by the elongation index in relation to the shear stress (0.3–50 Pa) applied to the RBC membrane. A higher elongation index indicates greater RBC deformability. Results RBCs from 11 septic patients were compared to RBCs from 21 volunteers. At ICU admission, RBCs from septic patients were significantly more spherical and RBC deformability was significantly lower in septic patients for all shear stress ≥1.93 Pa. These alterations of shape and deformability persists at day 3–5. We observed a significant decrease at ICU admission only in CD35 expression on RBCs from septic patients. This low expression remained at day 3–5. Conclusions We observed in RBCs from septic patients a rapid decrease expression of CD35 membrane protein protecting against complement activation. These modifications associated with altered RBC deformability and shape could facilitate erythrophagocytosis, contributing to anemia observed in sepsis. Other studies with a large number of patients and assessment of erythrophagocytosis were needed to confirm these preliminary data.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors discuss recent findings on pyruvate kinase activators as new therapeutic option in hereditary red cell disorders such as thalassemic syndromes or sickle cell disease (SCD).
Abstract: In red cells, pyruvate kinase is a key enzyme in the final step of glycolytic degradative process, which generates a constant energy supply via ATP production. This commentary discusses recent findings on pyruvate kinase activators as new therapeutic option in hereditary red cell disorders such as thalassemic syndromes or sickle cell disease (SCD).Mitapivat and etavopivat are two oral pyruvate kinase activators. Studies in a mouse model for β thalassemia have shown beneficial effects of mitapivat on both red cell survival and ineffective erythropoiesis, with an amelioration of iron homeostasis. This was confirmed in a proof-of-concept study in patients with nontransfusion-dependent thalassemias. Both mitapivat and etavopivat have been evaluated in mouse models for SCD, showing an increased 2-3DPG/ATP ratio and a reduction in haemolysis as well as in sickling. These data were confirmed in proof-of-concept clinical studies with both molecules carried in patients with SCD.Preclinical and clinical evidence indicate that pyruvate kinase activators represent new therapeutic option in hemoglobinopathies or SCD. Other red cell disorders such as hereditary spherocytosis or hereditary anaemias characterized by defective erythropoiesis might represent additional areas to investigate the therapeutic impact of pyruvate kinase activators.

1 citations

Journal ArticleDOI
TL;DR: Patients with Fontan circulation are particularly dependent on low pulmonary vascular resistance because their lungs are passively perfused, and hypoxia-induced erythropoiesis could adversely affect rheology with more prolonged Hypoxia exposure.
Abstract: Patients with Fontan circulation are particularly dependent on low pulmonary vascular resistance because their lungs are passively perfused. Hypoxia drives pulmonary vasoconstriction; thus, red blood cell (RBC) deformability and stability of hematological parameters might be of particular importance, because alterations during hypoxia might further influence circulation. This study aimed to measure respective parameters in patients with Fontan circulation exposed to normobaric hypoxia. A total of 18 patients with Fontan circulation (16 to 38 years) were exposed to normobaric hypoxia (15.2% ambient oxygen). Blood samples were taken in normoxia, after 24 h in hypoxia, and 60 min after return to normoxia. Blood count, RBC age distribution, EPO, RBC deformability, marker of RBC nitric oxide, oxidative state, and RBC ATP were measured. Hypoxia increased oxidative stress in RBC, but without affecting RBC deformability. RBC age distribution remained unaffected, although EPO concentrations increased, followed by a rise in reticulocyte count at an already high hematocrit. NO metabolism was not affected by hypoxia. Modest normobaric hypoxia for 24 h did not impair RBC deformability in patients with Fontan circulation; however, the oxidative system seemed to be stressed. Given the high baseline Hct in these patients, hypoxia-induced erythropoiesis could adversely affect rheology with more prolonged hypoxia exposure.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide a contemporary overview of the significant roles that redox switches play in calcium signaling for orchestrated endothelial, smooth muscle, and red blood cell control of arterial vascular tone.
Abstract: Resistance arteries and arterioles evolved as specialized blood vessels serving two important functions: (a) regulating peripheral vascular resistance and blood pressure and (b) matching oxygen and nutrient delivery to metabolic demands of organs. These functions require control of vessel lumen cross-sectional area (vascular tone) via coordinated vascular cell responses governed by precise spatial-temporal communication between intracellular signaling pathways. Herein, we provide a contemporary overview of the significant roles that redox switches play in calcium signaling for orchestrated endothelial, smooth muscle, and red blood cell control of arterial vascular tone. Three interrelated themes are the focus: (a) smooth muscle to endothelial communication for vasoconstriction, (b) endothelial to smooth muscle cell cross talk for vasodilation, and (c) oxygen and red blood cell interregulation of vascular tone and blood flow. We intend for this thematic framework to highlight gaps in our current knowledge and potentially spark interest for cross-disciplinary studies moving forward.