scispace - formally typeset
Search or ask a question
Author

Colin M. Ebert

Other affiliations: State Street Corporation
Bio: Colin M. Ebert is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Marine ecosystem & Ecosystem-based management. The author has an hindex of 6, co-authored 7 publications receiving 5193 citations. Previous affiliations of Colin M. Ebert include State Street Corporation.

Papers
More filters
Journal ArticleDOI
15 Feb 2008-Science
TL;DR: This article developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems and found that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers.
Abstract: The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.

5,365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply methods developed to map cumulative impacts globally to the California Current using more comprehensive and higher-quality data for 25 human activities and 19 marine ecosystems and reveal that coastal ecosystems near high human population density and the continental shelves off Oregon and Washington are the most heavily impacted, climate change is the top threat, and impacts from multiple threats are ubiquitous.
Abstract: Quantitative assessment of the spatial patterns of all human uses of the oceans and their cumulative effects is needed for implementing ecosystem-based management, marine protected areas, and ocean zoning. Here, we apply methods developed to map cumulative impacts globally to the California Current using more comprehensive and higher-quality data for 25 human activities and 19 marine ecosystems. This analysis indicates where protection and threat mitigation are most needed in the California Current and reveals that coastal ecosystems near high human population density and the continental shelves off Oregon and Washington are the most heavily impacted, climate change is the top threat, and impacts from multiple threats are ubiquitous. Remarkably, these results were highly spatially correlated with the global results for this region (R2= 0.92), suggesting that the global model provides guidance to areas without local data or resources to conduct similar regional-scale analyses.

189 citations

Journal ArticleDOI
TL;DR: In this article, spatial data on 14 recent anthropogenic threats specific to this region were gathered or created, including alien species, bottom fishing, lobster trap fishing, ship-based pollution, ship strike risks, marine debris, research diving, research equipment installation, research wildlife sacrifice, and several anthropogenic climate change threats i.e., increase in ultraviolet (UV) radiation, seawater acidification, the number of warm ocean temperature anomalies relevant to disease outbreaks and coral bleaching, and sea level rise.
Abstract: Effective and comprehensive regional-scale marine conservation requires fine-grained data on the spatial patterns of threats and their overlap. To address this need for the Papahānaumokuākea Marine National Monument (Monument) in Hawaii, USA, spatial data on 14 recent anthropogenic threats specific to this region were gathered or created, including alien species, bottom fishing, lobster trap fishing, ship-based pollution, ship strike risks, marine debris, research diving, research equipment installation, research wildlife sacrifice, and several anthropogenic climate change threats i.e., increase in ultraviolet (UV) radiation, seawater acidification, the number of warm ocean temperature anomalies relevant to disease outbreaks and coral bleaching, and sea level rise. These data were combined with habitat maps and expert judgment on the vulnerability of different habitat types in the Monument to estimate spatial patterns of current cumulative impact at 1 ha (0.01 km2) resolution. Cumulative impact was greatest for shallow reef areas and peaked at Maro Reef, where 13 of the 14 threats overlapped in places. Ocean temperature variation associated with disease outbreaks was found to have the highest predicted impact overall, followed closely by other climate-related threats, none of which have easily tractable management solutions at the regional scale. High impact threats most tractable to regional management relate to ship traffic. Sensitivity analyses show that the results are robust to both data availability and quality. Managers can use these maps to (1) inform management and surveillance priorities based on the ranking of threats and their distributions, (2) guide permitting decisions based on cumulative impacts, and (3) choose areas to monitor for climate change effects. Furthermore, this regional analysis can serve as a case study for managers elsewhere interested in assessing and mapping region-specific cumulative human impacts.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the global cumulative impact of four pervasive land-based impacts on coastal ecosystems, including nutrient input, organic and inorganic pollution, and the direct impact of coastal populations (e.g., coastal engineering and trampling).
Abstract: Coastal marine ecosystems rank among the most productive ecosystems on earth but are also highly threatened by the exposure to both ocean- and land-based human activities. Spatially explicit information on the distributions of land-based impacts is critical for managers to identify where the effects of land-based activities on ecosystem condition are greatest and, therefore, where they should prioritize mitigation of land-based impacts. Here, we quantify the global cumulative impact of four of the most pervasive land-based impacts on coastal ecosystems—nutrient input, organic and inorganic pollution, and the direct impact of coastal populations (e.g., coastal engineering and trampling)—and identify hotspots of land-based impact using a variety of metrics. These threat hotspots were primarily in Europe and Asia, with the top three adjacent to the Mississippi, Ganges, and Mekong rivers. We found that 95% of coastal and shelf areas (<200 m depth) and 40% of the global coastline experience little to no impact from land-based human activities, suggesting that marine conservation and resource management in these areas can focus on managing current ocean activities and preventing future spread of land-based stressors. These results provide guidance on where coordination between marine and terrestrial management is most critical and where a focus on ocean-based impacts is instead needed.

95 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-faceted study of Bishop pine (Pinus muricata D.Don) along a coastal-inland transect on an island off Southern California was conducted.
Abstract: Fog drip is recognized as an important source of water for many ecosystems that often harbor a disproportionate fraction of endemic species. Characterizing and quantifying the ecological importance of fog drip in these ecosystems requires a range of approaches. We report on a multi-faceted study of Bishop pine (Pinus muricata D. Don) along a coastal-inland transect on an island off Southern California. Hourly sampling included micrometeorology, sap flux, and soil moisture. Monthly measurements included changes in tree girth, plant water stress, and isotopic values of fogwater, rainwater, and xylem water. These data show that summertime fog drip clearly affected soil moisture and maintained aspects of tree function, including leaf water relations, sap flux dynamics, and growth rates. Although water from fog drip to the soil surface was occasionally taken up by pine trees, as quantified with isotopic measurements and a Bayesian mixing model, this utilization of fog drip was highly variable in space and time. The proportion of fogwater inferred to have been used is also much less than has been demonstrated in more mesic coastal forest ecosystems using isotopic methods. These results thus suggest high ecosystem sensitivity to even moderate amounts of fog drip, a finding with important implications as climate change differentially affects fog and rain patterns.

42 citations


Cited by
More filters
Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts is presented.
Abstract: Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

5,401 citations

Journal ArticleDOI
TL;DR: In this paper, the main ecological services across a variety of estuarine and coastal ecosystems (ECEs) including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes are reviewed.
Abstract: The global decline in estuarine and coastal ecosystems (ECEs) is affecting a number of critical benefits, or ecosystem services. We review the main ecological services across a variety of ECEs, including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes. Where possible, we indicate estimates of the key economic values arising from these services, and discuss how the natural variability of ECEs impacts their benefits, the synergistic relationships of ECEs across seascapes, and management implications. Although reliable valuation estimates are beginning to emerge for the key services of some ECEs, such as coral reefs, salt marshes, and mangroves, many of the important benefits of seagrass beds and sand dunes and beaches have not been assessed properly. Even for coral reefs, marshes, and mangroves, important ecological services have yet to be valued reliably, such as cross-ecosystem nutrient transfer (coral reefs), erosion control (marshes), and pollution control (mangroves). An important issue for valuing certain ECE services, such as coastal protection and habitat-fishery linkages, is that the ecological functions underlying these services vary spatially and temporally. Allowing for the connectivity between ECE habitats also may have important implications for assessing the ecological functions underlying key ecosystems services, such coastal protection, control of erosion, and habitat-fishery linkages. Finally, we conclude by suggesting an action plan for protecting and/or enhancing the immediate and longer-term values of ECE services. Because the connectivity of ECEs across land-sea gradients also influences the provision of certain ecosystem services, management of the entire seascape will be necessary to preserve such synergistic effects. Other key elements of an action plan include further ecological and economic collaborative research on valuing ECE services, improving institutional and legal frameworks for management, controlling and regulating destructive economic activities, and developing ecological restoration options.

3,750 citations

Journal ArticleDOI
TL;DR: This comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km2 yr−1 since 1980 and that 29% of the known areal extent has disappeared since seagRass areas were initially recorded in 1879.
Abstract: Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km(2) yr(-1) since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr(-1) before 1940 to 7% yr(-1) since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.

3,088 citations

Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems and will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.
Abstract: Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.

2,408 citations

Journal ArticleDOI
TL;DR: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects.
Abstract: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wideranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

2,136 citations