scispace - formally typeset
Search or ask a question
Author

Colin McDiarmid

Bio: Colin McDiarmid is an academic researcher from University of Oxford. The author has contributed to research in topics: Random graph & Random regular graph. The author has an hindex of 38, co-authored 191 publications receiving 4766 citations.


Papers
More filters
Journal ArticleDOI
01 Mar 1975
TL;DR: In this paper, it was shown that the number of vertices in the largest complete subgraph of ωn is, with probability one, the same as in this paper.
Abstract: Let ωn denote a random graph with vertex set {1, 2, …, n}, such that each edge is present with a prescribed probability p, independently of the presence or absence of any other edges. We show that the number of vertices in the largest complete subgraph of ωn is, with probability one,

361 citations

Journal ArticleDOI
TL;DR: It is shown that if G has maximum degree d, then A(G) = 0(d4/3) as d → ∞, which settles a problem of Erdos who conjectured, in 1976, that A( G) = o(d2) as d →∞.
Abstract: A vertex coloring of a graph G is called acyclic if no two adjacent vertices have the same color and there is no two-colored cycle in G. The acyclic chromatic number of G, denoted by A(G), is the least number of colors in an acyclic coloring of G. We show that if G has maximum degree d, then A(G) = 0(d4/3) as d → ∞. This settles a problem of Erdos who conjectured, in 1976, that A(G) = o(d2) as d → ∞. We also show that there are graphs G with maximum degree d for which A(G) = Ω(d4/3/(log d)1/3); and that the edges of any graph with maximum degree d can be colored by 0(d) colors so that no two adjacent edges have the same color and there is no two-colored cycle. All the proofs rely heavily on probabilistic arguments. © 1991 Wiley Periodicals, Inc.

243 citations

Journal ArticleDOI
TL;DR: It is shown that the probability that Rn is connected is bounded away from 0 and from 1, and that each positive integer k, with high probability Rn has linearly many vertices of a given degree.

179 citations

Journal ArticleDOI
TL;DR: An algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1+ε in time polynomial inm, ϕ and 1/ε when the dimensionn is fixed is described.
Abstract: We give an upper bound on the number of vertices ofP I , the integer hull of a polyhedronP, in terms of the dimensionn of the space, the numberm of inequalities required to describeP, and the size ϕ of these inequalities. For fixedn the bound isO(m n ϕ n− ). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1+e in time polynomial inm, ϕ and 1/e when the dimensionn is fixed.

164 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Book
01 Jan 2001
TL;DR: Concentration functions and inequalities isoperimetric and functional examples Concentration and geometry Concentration in product spaces Entropy and concentration Transportation cost inequalities Sharp bounds of Gaussian and empirical processes Selected applications References Index
Abstract: Concentration functions and inequalities Isoperimetric and functional examples Concentration and geometry Concentration in product spaces Entropy and concentration Transportation cost inequalities Sharp bounds of Gaussian and empirical processes Selected applications References Index

2,324 citations

Journal ArticleDOI
TL;DR: This paper shows that, under certain incoherence assumptions on the singular vectors of the matrix, recovery is possible by solving a convenient convex program as soon as the number of entries is on the order of the information theoretic limit (up to logarithmic factors).
Abstract: This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In general, accurate recovery of a matrix from a small number of entries is impossible, but the knowledge that the unknown matrix has low rank radically changes this premise, making the search for solutions meaningful. This paper presents optimality results quantifying the minimum number of entries needed to recover a matrix of rank r exactly by any method whatsoever (the information theoretic limit). More importantly, the paper shows that, under certain incoherence assumptions on the singular vectors of the matrix, recovery is possible by solving a convenient convex program as soon as the number of entries is on the order of the information theoretic limit (up to logarithmic factors). This convex program simply finds, among all matrices consistent with the observed entries, that with minimum nuclear norm. As an example, we show that on the order of nr log(n) samples are needed to recover a random n x n matrix of rank r by any method, and to be sure, nuclear norm minimization succeeds as soon as the number of entries is of the form nr polylog(n).

2,241 citations

Book
05 Aug 2002
TL;DR: Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science, and it will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.
Abstract: The theory of directed graphs has developed enormously over recent decades, yet this book (first published in 2000) remains the only book to cover more than a small fraction of the results. New research in the field has made a second edition a necessity. Substantially revised, reorganised and updated, the book now comprises eighteen chapters, carefully arranged in a straightforward and logical manner, with many new results and open problems. As well as covering the theoretical aspects of the subject, with detailed proofs of many important results, the authors present a number of algorithms, and whole chapters are devoted to topics such as branchings, feedback arc and vertex sets, connectivity augmentations, sparse subdigraphs with prescribed connectivity, and also packing, covering and decompositions of digraphs. Throughout the book, there is a strong focus on applications which include quantum mechanics, bioinformatics, embedded computing, and the travelling salesman problem. Detailed indices and topic-oriented chapters ease navigation, and more than 650 exercises, 170 figures and 150 open problems are included to help immerse the reader in all aspects of the subject. Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science. It will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.

1,938 citations

Journal ArticleDOI
TL;DR: In this article, the authors expose the current state of the understanding of how the spatial constraints affect the structure and properties of these networks and review the most recent empirical observations and the most important models of spatial networks.
Abstract: Complex systems are very often organized under the form of networks where nodes and edges are embedded in space Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, neural networks, are all examples where space is relevant and where topology alone does not contain all the information Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields ranging from urbanism to epidemiology An important consequence of space on networks is that there is a cost associated to the length of edges which in turn has dramatic effects on the topological structure of these networks We will expose thoroughly the current state of our understanding of how the spatial constraints affect the structure and properties of these networks We will review the most recent empirical observations and the most important models of spatial networks We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread

1,908 citations