scispace - formally typeset
Search or ask a question
Author

Colin Studholme

Bio: Colin Studholme is an academic researcher from University of Washington. The author has contributed to research in topics: Image registration & Diffusion MRI. The author has an hindex of 57, co-authored 183 publications receiving 16410 citations. Previous affiliations of Colin Studholme include Dartmouth College & Guy's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom‐based monitoring of all scanners could be used as a model for other multisite trials.
Abstract: Dementia, one of the most feared associates of increasing longevity, represents a pressing public health problem and major research priority. Alzheimer's disease (AD) is the most common form of dementia, affecting many millions around the world. There is currently no cure for AD, but large numbers of novel compounds are currently under development that have the potential to modify the course of the disease and slow its progression. There is a pressing need for imaging biomarkers to improve understanding of the disease and to assess the efficacy of these proposed treatments. Structural magnetic resonance imaging (MRI) has already been shown to be sensitive to presymptomatic disease (1-10) and has the potential to provide such a biomarker. For use in large-scale multicenter studies, however, standardized methods that produce stable results across scanners and over time are needed. The Alzheimer's Disease Neuroimaging Initiative (ADNI) study is a longitudinal multisite observational study of elderly individuals with normal cognition, mild cognitive impairment (MCI), or AD (11,12). It is jointly funded by the National Institutes of Health (NIH) and industry via the Foundation for the NIH. The study will assess how well information (alone or in combination) obtained from MRI, (18F)-fludeoyglucose positron emission tomography (FDG PET), urine, serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical and neuropsychometric assessments, can measure disease progression in the three groups of elderly subjects mentioned above. At the 55 participating sites in North America, imaging, clinical, and biologic samples will be collected at multiple time points in 200 elderly cognitively normal, 400 MCI, and 200 AD subjects. All subjects will be scanned with 1.5 T MRI at each time point, and half of these will also be scanned with FDG PET. Subjects not assigned to the PET arm of the study will be eligible for 3 T MRI scanning. The goal is to acquire both 1.5 T and 3 T MRI studies at multiple time points in 25% of the subjects who do not undergo PET scanning [R2C1]. CSF collection at both baseline and 12 months is targeted for 50% of the subjects. Sampling varies by clinical group. Healthy elderly controls will be sampled at 0, 6, 12, 24, and 36 months. Subjects with MCI will be sampled at 0, 6, 12, 18, 24, and 36 months. AD subjects will be sampled at 0, 6, 12, and 24 months. Major goals of the ADNI study are: to link all of these data at each time point and make this repository available to the general scientific community; to develop technical standards for imaging in longitudinal studies; to determine the optimum methods for acquiring and analyzing images; to validate imaging and biomarker data by correlating these with concurrent psychometric and clinical assessments; and to improve methods for clinical trials in MCI and AD. The ADNI study overall is divided into cores, with each core managing ADNI-related activities within its sphere of expertise: clinical, informatics, biostatistics, biomarkers, and imaging. The purpose of this report is to describe the MRI methods and decision-making process underlying the selection of the MRI protocol employed in the ADNI study.

3,611 citations

Journal ArticleDOI
TL;DR: Results indicate that the normalised entropy measure provides significantly improved behaviour over a range of imaged fields of view.

2,364 citations

Journal ArticleDOI
TL;DR: The results indicate that retrospective techniques have the potential to produce satisfactory results much of the time, but that visual inspection is necessary to guard against large errors.
Abstract: Comparison and evaluation of retrospective intermodality brain image registration techniques

835 citations

Journal ArticleDOI
TL;DR: A method of multiresolution optimization of five measures of voxel intensity similarity is described and the mutual information measure proved the most robust to initial starting estimate, successfully registering 98.8% of 900 trial misregistrations.
Abstract: Approaches using measures of voxel intensity similarity are showing promise in fully automating magnetic resonance (MR) and positron emission tomography (PET) image registration in the head, without requiring extraction and identification of corresponding structures. In this paper a method of multiresolution optimization of these measures is described and five alternative measures are compared: cross correlation, minimization of corresponding PET intensity variation, moments of the distribution of values in the intensity feature space, entropy of the intensity feature space and mutual information. Their ability to recover registration is examined for ten clinically acquired image pairs with respect to the size of initial misregistration, the precision of the final result, and the accuracy assessed by visual inspection. The mutual information measure proved the most robust to initial starting estimate, successfully registering 98.8% of 900 trial misregistrations. Success is defined as providing a visually acceptable solution to a trained observer. A high resolution search (1/16 mm step size) of 30 trial misregistrations showed that optimization using the mutual information measure provided solutions with 0.13 mm, 0.11 mm and 0.17 mm standard deviations in the three Cartesian axes of the translation vector and 0.2 degree, 0.3 degree and 0.2 degree standard deviations for rotations about the three axes. The algorithm takes between 4 and 8 minutes to run on a typical workstation, including visual inspection of the result.

745 citations

Journal ArticleDOI
TL;DR: The soft tissue correlation and mutual information measures were found to provide the most robust measures of misregistration, providing results comparable to or better than those from manual point-based registration for all but the most truncated image volumes.

413 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the use of local optimisation methods together with the standard multi-resolution approach is not sufficient to reliably find the global minimum, so a global optimisation method is proposed that is specifically tailored to this form of registration.

6,413 citations

Journal ArticleDOI
TL;DR: The results clearly indicate that the proposed nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.
Abstract: In this paper the authors present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalized mutual information is used as a voxel-based similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of three-dimensional (3-D) breast MRI in volunteers and patients. In particular, the authors have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.

5,490 citations