scispace - formally typeset
Search or ask a question
Author

Cong Gao

Bio: Cong Gao is an academic researcher from Jiangnan University. The author has contributed to research in topics: Medicine & Metabolic engineering. The author has an hindex of 11, co-authored 55 publications receiving 491 citations. Previous affiliations of Cong Gao include Shihezi University & Nanjing Tech University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Recent progress of DCEO biotechnology and examples of its application are summarized, and insights as to when, what and how different strategies should be taken are provided.
Abstract: Chemical synthesis is a well established route for producing many chemicals on a large scale, but some drawbacks still exist in this process, such as unstable intermediates, multistep reactions, complex process control, etc. Biobased production provides an attractive alternative to these challenges, but how to make cells into efficient factories is challenging. As a key enabling technology to develop efficient cell factories, design-construction-evaluation-optimization (DCEO) biotechnology, which incorporates the concepts and techniques of pathway design, pathway construction, pathway evaluation, and pathway optimization at the systems level, offers a conceptual and technological framework to exploit potential pathways, modify existing pathways and create new pathways for the optimal production of desired chemicals. Here, we summarize recent progress of DCEO biotechnology and examples of its application, and provide insights as to when, what and how different strategies should be taken. In addition, we hi...

133 citations

Journal ArticleDOI
TL;DR: Two sets of controllable protein units are built using engineered viral proteases and proteolytic signals for increasing titers of shikimate and D-xylonate in E. coli, highlighting the applicability of programmable protein switches to metabolic engineering for valuable chemicals production.
Abstract: Synthetic biology aims to develop programmable tools to perform complex functions such as redistributing metabolic flux in industrial microorganisms. However, development of protein-level circuits is limited by availability of designable, orthogonal, and composable tools. Here, with the aid of engineered viral proteases and proteolytic signals, we build two sets of controllable protein units, which can be rationally configured to three tools. Using a protease-based dynamic regulation circuit to fine-tune metabolic flow, we achieve 12.63 g L−1 shikimate titer in minimal medium without inducer. In addition, the carbon catabolite repression is alleviated by protease-based inverter-mediated flux redistribution under multiple carbon sources. By coordinating reaction rate using a protease-based oscillator in E. coli, we achieve d-xylonate productivity of 7.12 g L−1 h−1 with a titer of 199.44 g L−1. These results highlight the applicability of programmable protein switches to metabolic engineering for valuable chemicals production. Current flux rewiring technologies in metabolic engineering are mainly transcriptional regulation. Here, the authors build two sets of controllable protein units using engineered viral proteases and proteolytic signals, and utilize for increasing titers of shikimate and D-xylonate in E. coli.

75 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in vitro modular pathway optimization combined with in vivo multiplexed combinatorial engineering enables effective characterization of the bottleneck of a complex biosynthetic cascade and improves the output of the engineered pathway.
Abstract: The application of rational design in reallocating metabolic flux to overproduce desired chemicals is always restricted by the native regulatory network. Here, we demonstrated that in vitro modular pathway optimization combined with in vivo multiplexed combinatorial engineering enables effective characterization of the bottleneck of a complex biosynthetic cascade and improves the output of the engineered pathway. As a proof of concept, we systematically identified the rate-limiting step of a five-gene malate biosynthetic pathway by combinatorially tuning the enzyme loads of a reconstituted biocatalytic reaction in a cell-free system. Using multiplexed CRISPR interference, we subsequently eliminated the metabolic constraints by rationally assigning an optimal gene expression pattern for each pathway module. The present engineered strain Escherichia coli B0013-47 exhibited a 2.3-fold increase in malate titer compared with that of the parental strain, with a yield of 0.85 mol/mol glucose in shake-flask culture and titer of 269 mM (36 g/L) in fed-batch cultivation. The strategy reported herein represents a powerful method for improving the efficiency of multi-gene pathways and advancing the success of metabolic engineering.

71 citations

Journal ArticleDOI
TL;DR: An efficient affinity adsorption–enzymatic reaction integrated approach to produce N-acetyl-D-glucosamine (GlcNAc) from crude chitin powders (CP) with high purity with easy separation from hydrolysates with a high purity of 98%.

56 citations

Journal ArticleDOI
TL;DR: An optogenetic method is employed to realize dynamic morphological engineering of E. coli replication and division and shows the increased production of acetoin and poly(lactate-co-3-hydroxybutyrate).
Abstract: Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm−1 and acetoin titer to 67.2 g·L−1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L−1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories. Manipulation of genes controlling microbial shapes can affect bio-production. Here, the authors employ an optogenetic method to realize dynamic morphological engineering of E. coli replication and division and show the increased production of acetoin and poly(lactate-co-3-hydroxybutyrate).

51 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a strategy that combines protein-protein interaction mapping and large-scale phenotypic analysis in Caenorhabditis elegans was used to identify 12 worm DDR orthologs and 11 novel DDR genes.
Abstract: Many human cancers originate from defects in the DNA damage response (DDR). Although much is known about this process, it is likely that additional DDR genes remain to be discovered. To identify such genes, we used a strategy that combines protein-protein interaction mapping and large-scale phenotypic analysis inCaenorhabditis elegans. Together, these approaches identified 12 worm DDR orthologs and 11 novel DDR genes. One of these is the putative ortholog of hBCL3, a gene frequently altered in chronic lymphocytic leukemia. Thus, the combination of functional genomic mapping approaches in model organisms may facilitate the identification and characterization of genes involved in cancer and, perhaps, other human diseases.

264 citations

01 Feb 2012
TL;DR: This work attempts to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering, and introduces a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules.
Abstract: Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering.

259 citations

Journal ArticleDOI
TL;DR: Although the films showed very low toxicity to cells, they exhibited good antimicrobial activity and effectively extended the storage life of litchi as a packaging and provides the potential application for silver nanoparticles in food field.

199 citations

Journal ArticleDOI
TL;DR: Yast8 is introduced with its model ecosystem, a comprehensive computational resource for simulating the metabolism of Saccharomyces cerevisiae, and further facilitates the exploration of yeast metabolism at a multi-scale level.
Abstract: Genome-scale metabolic models (GEMs) represent extensive knowledgebases that provide a platform for model simulations and integrative analysis of omics data. This study introduces Yeast8 and an associated ecosystem of models that represent a comprehensive computational resource for performing simulations of the metabolism of Saccharomyces cerevisiae––an important model organism and widely used cell-factory. Yeast8 tracks community development with version control, setting a standard for how GEMs can be continuously updated in a simple and reproducible way. We use Yeast8 to develop the derived models panYeast8 and coreYeast8, which in turn enable the reconstruction of GEMs for 1,011 different yeast strains. Through integration with enzyme constraints (ecYeast8) and protein 3D structures (proYeast8DB), Yeast8 further facilitates the exploration of yeast metabolism at a multi-scale level, enabling prediction of how single nucleotide variations translate to phenotypic traits. Genome-scale metabolic models provide a platform to study metabolism through simulations and analysis of omics data. Here the authors introduce Yeast8 with its model ecosystem, a comprehensive computational resource for simulating the metabolism of Saccharomyces cerevisiae.

193 citations

Journal ArticleDOI
01 Mar 2020
TL;DR: How microorganisms can be engineered for CO2 fixation and industrial valorization of this key molecule is described, and a shift from sugar-based feedstocks and biomass to the use of atmospheric CO2 for the bioproduction of fuels and chemicals is desirable.
Abstract: Concerns regarding petroleum depletion and global climate change caused by greenhouse gas emissions have spurred interest in renewable alternatives to fossil fuels. Third-generation (3G) biorefineries aim to utilize microbial cell factories to convert renewable energies and atmospheric CO2 into fuels and chemicals, and hence represent a route for assessing fuels and chemicals in a carbon-neutral manner. However, to establish processes competitive with the petroleum industry, it is important to clarify/evaluate/identify the most promising CO2 fixation pathways, the most appropriate CO2 utilization models and the necessary productivity levels. Here, we discuss the latest advances in 3G biorefineries. Following an overview of applications of CO2 feedstocks, mainly from flue gas and waste gasification, we review prominent opportunities and barriers in CO2 fixation and energy capture. We then summarize reported CO2-based products and industries, and describe trends and key challenges for future advancement of 3G biorefineries. A shift from sugar-based feedstocks and biomass to the use of atmospheric CO2 for the bioproduction of fuels and chemicals is desirable. This Review describes how microorganisms can be engineered for CO2 fixation and industrial valorization of this key molecule.

192 citations