scispace - formally typeset
Search or ask a question
Author

Conghui Wang

Bio: Conghui Wang is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Antibody titer & Viral replication. The author has an hindex of 9, co-authored 15 publications receiving 591 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study shows that Sars-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-Cov-2.
Abstract: The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-β promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-β treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2.

720 citations

Journal ArticleDOI
TL;DR: Results support neutralizing sdAbs as a potential alternative for antiviral therapies by suggesting that the sdAbs either completely block or significantly inhibit the association between SARS-CoV-2 RBD and viral entry receptor ACE2.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads worldwide and leads to an unprecedented medical burden and lives lost. Neutralizing antibodies provide efficient blockade for viral infection and are a promising category of biological therapies. Here, using SARS-CoV-2 spike receptor-binding domain (RBD) as a bait, we generate a panel of humanized single domain antibodies (sdAbs) from a synthetic library. These sdAbs reveal binding kinetics with the equilibrium dissociation constant (KD) of 0.99-35.5 nM. The monomeric sdAbs show half maximal neutralization concentration (EC50) of 0.0009-0.07 µg/mL and 0.13-0.51 µg/mL against SARS-CoV-2 pseudotypes, and authentic SARS-CoV-2, respectively. Competitive ligand-binding experiments suggest that the sdAbs either completely block or significantly inhibit the association between SARS-CoV-2 RBD and viral entry receptor ACE2. Fusion of the human IgG1 Fc to sdAbs improve their neutralization activity by up to ten times. These results support neutralizing sdAbs as a potential alternative for antiviral therapies.

115 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors reported that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses.
Abstract: SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-β promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.

80 citations

Journal ArticleDOI
TL;DR: In this article, the temporal changes of IgG antibody against spike proteins (S-IgG) of SARS-CoV-2 and seasonal HCoVs in 838 plasma samples collected from 344 COVID-19 patients were analyzed.
Abstract: Seasonal human coronaviruses (HCoVs) including HCoV-229E, -OC43, -NL63, and -HKU1 widely spread in global human populations. However, the relevance of humoral response against seasonal HCoVs to COVID-19 pathogenesis is elusive. In this study, we profiled the temporal changes of IgG antibody against spike proteins (S-IgG) of SARS-CoV-2 and seasonal HCoVs in 838 plasma samples collected from 344 COVID-19 patients. We tested the antigenic cross-reactivities of S protein between SARS-CoV-2 and seasonal HCoVs and evaluated the correlations between the levels of HCoV-OC43 S-IgG and the disease severity in COVID-19 patients. We found that SARS-CoV-2 S-IgG titres mounted until days 22-28, whereas HCoV-OC43 antibody titres increased until days 15-21 and then plateaued until day 46. However, IgG titres against HCoV-NL63, -229E, and -HKU1 showed no significant increase. A two-way cross-reactivity was identified between SARS-CoV-2 and HCoV-OC43. Neutralizing antibodies against SARS-CoV-2 were not detectable in healthy controls who were positive for HCoV-OC43 S-IgG. HCoV-OC43 S-IgG titres were significantly higher in patients with severe disease than those in mild patients at days 1-21 post symptom onset (PSO). Higher levels of HCoV-OC43 S-IgG were also observed in patients requiring mechanical ventilation. At days 1-10 PSO, HCoV-OC43 S-IgG titres correlated to disease severity in the age group over 60. Our data indicate that there is a correlation between cross-reactive antibody against HCoV-OC43 spike protein and disease severity in COVID-19 patients.

64 citations

Posted ContentDOI
15 Apr 2020-bioRxiv
TL;DR: Results reveal the novel SARS-CoV-2 RBD targeting sdAbs and pave a road for antibody drug development and show that fusion of the human IgG1 Fc to sdAbs improved their neutralization activity by tens of times.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across more than 200 countries and regions, leading to an unprecedented medical burden and live lost. SARS-CoV-2 specific antivirals or prophylactic vaccines are not available. Neutralizing antibodies provide efficient blockade for viral infection and are a promising category of biological therapies. Using SARS-CoV-2 spike RBD as a bait, we have discovered a panel of humanized single domain antibodies (sdAbs). These sdAbs revealed binding kinetics with the equilibrium dissociation constant (KD) of 0.7~33 nM. The monomeric sdAbs showed half maximal inhibitory concentration (IC50) of 0.003~0.3 μg/mL in pseudotyped particle neutralization assay, and 0.23~0.50 μg/mL in authentic SARS-CoV-2 neutralization assay. Competitive ligand-binding data suggested that the sdAbs either completely blocked or significantly inhibited the association between SARS-CoV-2 RBD and viral entry receptor ACE2. Finally, we showed that fusion of the human IgG1 Fc to sdAbs improved their neutralization activity by tens of times. These results reveal the novel SARS-CoV-2 RBD targeting sdAbs and pave a road for antibody drug development.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity.

2,933 citations

10 Mar 2020

2,024 citations

Journal ArticleDOI
TL;DR: Advances in animal models that are important for understanding the pathogenesis of SARS-CoV-2, vaccine development, and therapeutic testing are presented and comparisons are made from studies with SARS to provide further perspectives on COVID-19 and draw inferences for future investigations.

712 citations

Journal ArticleDOI
TL;DR: Insight is provided on SARS-CoV-2 evasion of IFN-I response and its potential impact on viral transmission and pathogenesis.

645 citations