scispace - formally typeset
Search or ask a question
Author

Congli He

Bio: Congli He is an academic researcher from Beijing Normal University. The author has contributed to research in topics: Spintronics & Materials science. The author has an hindex of 27, co-authored 54 publications receiving 2823 citations. Previous affiliations of Congli He include University of California, Los Angeles & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a charge tunneling model was used to explain the piezoresistive characteristics of nanographene films, which indicates their results provide a different rout toward ultra-sensitive strain sensors.
Abstract: Graphene shows promise on strain sensor applications, but the piezoresistive sensitivity of perfect graphene is low due to its weak electrical conductivity response upon structural deformation. In this paper, we used nanographene films for ultra-sensitive strain sensors. The piezoresistive sensitivity of nanographene films with different thicknesses and conductivities was systematically investigated and a nearly inverse proportional correlation was found. A gauge factor over 300, the highest so far for graphene-based strain sensors, was achieved. A charge tunneling model was used to explain the piezoresistive characteristics of nanographene films, which indicates our results provide a different rout toward ultra-sensitive strain sensors.

291 citations

Journal ArticleDOI
TL;DR: A room-temperature skyrmion shift memory device is demonstrated, where individual skyrnions are controllably generated and shifted using current-induced spin-orbit torques and electrically realize both writing and addressing of a stream of skyrMions in the device.
Abstract: Magnetic skyrmions are intensively explored for potential applications in ultralow-energy data storage and computing. To create practical skyrmionic memory devices, it is necessary to electrically create and manipulate these topologically protected information carriers in thin films, thus realizing both writing and addressing functions. Although room-temperature skyrmions have been previously observed, fully electrically controllable skyrmionic memory devices, integrating both of these functions, have not been developed to date. Here, we demonstrate a room-temperature skyrmion shift memory device, where individual skyrmions are controllably generated and shifted using current-induced spin–orbit torques. Particularly, it is shown that one can select the device operation mode in between (i) writing new single skyrmions or (ii) shifting existing skyrmions by controlling the magnitude and duration of current pulses. Thus, we electrically realize both writing and addressing of a stream of skyrmions in the devi...

260 citations

Journal ArticleDOI
06 Feb 2015-ACS Nano
TL;DR: A tuning of both sensitivity and resistance of graphene strain sensing devices by tailoring graphene nanostructures is reported, suggesting a great potential in electronic skin applications.
Abstract: Graphene-based strain sensors have attracted much attention recently. Usually, there is a trade-off between the sensitivity and resistance of such devices, while larger resistance devices have higher energy consumption. In this paper, we report a tuning of both sensitivity and resistance of graphene strain sensing devices by tailoring graphene nanostructures. For a typical piezoresistive nanographene film with a sheet resistance of ∼100 KΩ/□, a gauge factor of more than 600 can be achieved, which is 50× larger than those in previous studies. These films with high sensitivity and low resistivity were also transferred on flexible substrates for device integration for force mapping. Each device shows a high gauge factor of more than 500, a long lifetime of more than 104 cycles, and a fast response time of less than 4 ms, suggesting a great potential in electronic skin applications.

233 citations

Journal ArticleDOI
TL;DR: In this paper, reliable and reproducible resistive switching behaviors were observed in graphene oxide (GO) thin films prepared by the vacuum filtration method, which indicated that GO is potentially useful for future nonvolatile memory applications.
Abstract: Reliable and reproducible resistive switching behaviors were observed in graphene oxide (GO) thin films prepared by the vacuum filtration method. The Cu/GO/Pt structure showed an on/off ratio of about 20, a retention time of more than 104 s, and switching threshold voltages of less than 1 V. The switching effect could be understood by considering the desorption/absorption of oxygen-related groups on the GO sheets as well as the diffusion of the top electrodes. Our experiments indicate that GO is potentially useful for future nonvolatile memory applications.

230 citations

Journal ArticleDOI
TL;DR: In this paper, a bilayer structure of Fe3GeTe2/Pt was proposed to switch the magnetization from one state to another electrically by spin-orbit torques (SOTs).
Abstract: The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials holds promises for spintronic devices with exceptional properties. However, to use 2D vdW magnets for building spintronic nanodevices such as magnetic memories, key challenges remain in terms of effectively switching the magnetization from one state to the other electrically. Here, we devise a bilayer structure of Fe3GeTe2/Pt, in which the magnetization of few-layered Fe3GeTe2 can be effectively switched by the spin-orbit torques (SOTs) originated from the current flowing in the Pt layer. The effective magnetic fields corresponding to the SOTs are further quantitatively characterized using harmonic measurements. Our demonstration of the SOT-driven magnetization switching in a 2D vdW magnet could pave the way for implementing low-dimensional materials in the next-generation spintronic applications.

201 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Journal ArticleDOI
TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Abstract: There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin-mountable, and wearable strain sensors are needed for several potential applications including personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin-mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.

2,154 citations