scispace - formally typeset
Search or ask a question
Author

Conrad Chan

Bio: Conrad Chan is an academic researcher from Monash University. The author has contributed to research in topics: Supernova & Stars. The author has an hindex of 11, co-authored 20 publications receiving 888 citations. Previous affiliations of Conrad Chan include Heidelberg Institute for Theoretical Studies & Michigan State University.

Papers
More filters
Journal ArticleDOI
TL;DR: Phantom as discussed by the authors is a fast, parallel, modular, and low-memory smoothed particle hydrodynamics code developed over the last decade for astrophysical applications in three dimensions.
Abstract: We present Phantom, a fast, parallel, modular, and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary, and high energy astrophysics, and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, dust–gas mixtures, H2 chemistry, physical viscosity, external forces including numerous galactic potentials, Lense–Thirring precession, Poynting–Robertson drag, and stochastic turbulent driving. Phantom is hereby made publicly available.

285 citations

Journal ArticleDOI
TL;DR: In this paper, a suite of seven 3D supernova simulations of non-rotating low-mass progenitors using multi-group neutrino transport is presented, where the mass outflow rate already exceeds the accretion rate onto the proto-neutron star and the mass and angular momentum of the compact remnant have closely approached their final value, barring the possibility of later fallback.
Abstract: We present a suite of seven 3D supernova simulations of non-rotating low-mass progenitors using multi-group neutrino transport. Our simulations cover single star progenitors with zero-age main sequence masses between $9.6 M_\odot$ and $12.5 M_\odot$ and (ultra)stripped-envelope progenitors with initial helium core masses between $2.8 M_\odot$ and $3.5 M_\odot$. We find explosion energies between $0.1\,\mathrm{Bethe}$ and $0.4\,\mathrm{Bethe}$, which are still rising by the end of the simulations. Although less energetic than typical events, our models are compatible with observations of less energetic explosions of low-mass progenitors. In six of our models, the mass outflow rate already exceeds the accretion rate onto the proto-neutron star, and the mass and angular momentum of the compact remnant have closely approached their final value, barring the possibility of later fallback. While the proto-neutron star is still accelerated by the gravitational tug of the asymmetric ejecta, the acceleration can be extrapolated to obtain estimates for the final kick velocity. We obtain gravitational neutron star masses between $1.22 M_\odot$ and $1.44 M_\odot$, kick velocities between $11\, \mathrm{km}\, \mathrm{s}^{-1}$ and $695\, \mathrm{km}\, \mathrm{s}^{-1}$, and spin periods from $20\, \mathrm{ms}$ to $2.7\,\mathrm{s}$, which suggests that typical neutron star birth properties can be naturally obtained in the neutrino-driven paradigm. We find a loose correlation between the explosion energy and the kick velocity. There is no indication of spin-kick alignment, but a correlation between the kick velocity and the neutron star angular momentum, which needs to be investigated further as a potential point of tension between models and observations.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the authors obtained very large Telescope-Ultraviolet and Visual Echelle Spectrograph (UVES) spectra extending to 3060 angstrom showing strong OH A-X band lines enabling an oxygen abundance to be derived.
Abstract: SMSS J031300.36-670839.3 (hereafter SM0313-6708) is a sub-giant halo star, with no detectable Fe lines and large overabundances of C and Mg relative to Ca. We obtained Very Large Telescope-Ultraviolet and Visual Echelle Spectrograph (UVES) spectra extending to 3060 angstrom showing strong OH A-X band lines enabling an oxygen abundance to be derived. The OH A-X band lines in SM0313-6708 are much stronger than the CH C-X band lines. Spectrum synthesis fits indicate an [O/C] ratio of 0.02 +/- 0.175. Our high signal-to-noise ratio UVES data also enabled us to lower the Fe abundance limit to [Fe/H]( ,NLTE) < -7.52 (3 sigma). These data support our previous suggestion that the star formed from the iron-poor ejecta of a single massive star Population III supernova.

97 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a 3D simulation of BH formation and fallback in an "aborted" neutrino-driven explosion of a solar mass zero-metallicity progenitor from collapse to shock breakout.
Abstract: Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an "aborted" neutrino-driven explosion of a $40$ solar mass zero-metallicity progenitor from collapse to shock breakout. We follow the phase up to BH formation using the relativistic CoCoNuT-FMT code. For the subsequent evolution to shock breakout we apply the moving-mesh code Arepo to core-collapse supernovae for the first time. Our simulation shows that despite early BH formation, neutrino-heated bubbles can survive for tens of seconds before being accreted, leaving them sufficient time to transfer part of their energy to sustain the shock wave as is propagates through the envelope. Although the initial net energy ($\sim 2$ Bethe) of the neutrino-heated ejecta barely equals the binding energy of the envelope, $11\,\mathrm{M}_\odot$ of hydrogen are still expelled with an energy of $0.23$ Bethe. We find no significant mixing and only a modest BH kick and spin, but speculate that stronger effects could occur for slightly more energetic explosions or progenitors with less tightly bound envelopes.

79 citations

Journal ArticleDOI
TL;DR: In this article, the first high-resolution spectroscopic analysis of HE0020-1741, a bright (V=12.9), ultra metal-poor (Fe/H] = -4.1), carbon-enhanced (C/Fe] = +1.7) star selected from the Hamburg/ESO Survey was performed.
Abstract: We report on the first high-resolution spectroscopic analysis of HE0020-1741, a bright (V=12.9), ultra metal-poor ([Fe/H] = -4.1), carbon-enhanced ([C/Fe] = +1.7) star selected from the Hamburg/ESO Survey. This star exhibits low abundances of neutron-capture elements ([Ba/Fe] = -1.1), and an absolute carbon abundance A(C) = 6.1; based on either criterion, HE0020-1741 is sub-classified as a CEMP-no star. We show that the light-element abundance pattern of HE0020-1741 is consistent with predicted yields from a massive (M = 21.5 Mo), primordial composition, supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models (covering the mass range 10 Mo - 100 Mo), in order to probe the nature of their likely stellar progenitors. Our results suggest that at least two classes of progenitors are required at [Fe/H] < -4.0, as the abundance patterns for more than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields.

76 citations


Cited by
More filters
Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations

Journal ArticleDOI
TL;DR: In this article, the authors present 39 candidate gravitational wave events from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15.00.
Abstract: We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of ~0.8, as well as events whose components could not be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational wave data alone. The range of candidate events which are unambiguously identified as binary black holes (both objects $\geq 3~M_\odot$) is increased compared to GWTC-1, with total masses from $\sim 14~M_\odot$ for GW190924_021846 to $\sim 150~M_\odot$ for GW190521. For the first time, this catalog includes binary systems with significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ~26 weeks of data (~1.5 per week) is consistent with GWTC-1.

768 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an answer to the question "How Were the Elements from Iron to Uranium Made?" (Abridged) by combining new results and important breakthroughs in the related nuclear, atomic and astronomical fields of science.
Abstract: The production of about half of the heavy elements found in nature is assigned to a specific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understanding faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experimental information is available, and one has to rely strongly on theoretical predictions for nuclear properties. (b) While for many years the occurrence of the r-process has been associated with supernovae, more recent studies have cast substantial doubts on this environment. Alternative scenarios include the mergers of neutron stars, neutron-star black hole mergers, but possibly also rare classes of supernovae as well as hypernovae/collapsars with polar jet ejecta and also accretion disk outflows related to the collapse of fast rotating massive stars with high magnetic fields. Stellar r-process abundance observations, have provided insights into, and constraints on the frequency of and conditions in the responsible stellar production sites. One of them, neutron star mergers, was just identified and related to the Gravitational Wave event GW170817. High resolution observations, increasingly more precise due to improved experimental atomic data, have been particularly important in defining the heavy element abundance patterns of the old halo stars, and thus determining the extent, and nature, of the earliest nucleosynthesis in our Galaxy. Combining new results and important breakthroughs in the related nuclear, atomic and astronomical fields of science, this review attempts to provide an answer to the question "How Were the Elements from Iron to Uranium Made?" (Abridged)

321 citations