scispace - formally typeset
Search or ask a question
Author

Constance Scharff

Bio: Constance Scharff is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Zebra finch & FOXP2. The author has an hindex of 34, co-authored 81 publications receiving 6699 citations. Previous affiliations of Constance Scharff include Rockefeller University & Adelphi University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that Area X and LMAN contribute differently to song acquisition: the song variability that is typical of vocal development persists following early deafness or lesions of Area X but ends abruptly following removal of LMAN.
Abstract: Song production in song birds is controlled by an efferent pathway. Appended to this pathway is a “recursive loop” that is necessary for song acquisition but not for the production of learned song. Since zebra finches learn their song by imitating external models, we speculated that the importance of the recursive loop for learning might derive from its processing of auditory feedback during song acquisition. This hypothesis was tested by comparing the effects on song in birds deafened early in life and birds with early lesions in either of two nuclei--Area X and the lateral magnocellular nucleus of the anterior neostriatum (LMAN). These nuclei are part of the recursive loop. The three treatments affected song development differently, as reflected by various parameters of the adult song of these birds. Whereas LMAN lesions resulted in songs with monotonous repetitions of a single note complex, songs of Area X-lesioned birds consisted of rambling series of unusually long and variable notes. Furthermore, whereas song of LMAN lesioned birds stabilized early, song stability as seen in intact birds was never achieved in Area X-lesioned birds. Early deafness also resulted in poorly structured and unstable song. We conclude that Area X and LMAN contribute differently to song acquisition: the song variability that is typical of vocal development persists following early deafness or lesions of Area X but ends abruptly following removal of LMAN. Apparently, LMAN plays a crucial role in fostering the kinds of circuit plasticity necessary for learning.

921 citations

Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: This work shows that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets and shows evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience.
Abstract: The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.

837 citations

Journal ArticleDOI
01 Oct 1998-Neuron
TL;DR: It is shown that the anterior forebrain vocal pathway contains medial and lateral "cortical-basal ganglia" subdivisions that have differential ZENK gene activation depending on whether the bird sings female-directed or undirected song.

448 citations

Journal ArticleDOI
TL;DR: This body of research represents the first functional genetic forays into neural mechanisms contributing to human spoken language, and Converging data indicate that Foxp2 is important for modulating the plasticity of relevant neural circuits.

421 citations

Journal ArticleDOI
TL;DR: These findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2, which is essential for developing the full articulatory power of human language.
Abstract: The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and learned vocalizations in songbirds bear behavioral and neural parallels, songbirds provide a genuine model for investigating the basic principles of speech and its pathologies. In zebra finch Area X, a basal ganglia structure necessary for song learning, FoxP2 expression increases during the time when song learning occurs. Here, we used lentivirus-mediated RNA interference (RNAi) to reduce FoxP2 levels in Area X during song development. Knockdown of FoxP2 resulted in an incomplete and inaccurate imitation of tutor song. Inaccurate vocal imitation was already evident early during song ontogeny and persisted into adulthood. The acoustic structure and the duration of adult song syllables were abnormally variable, similar to word production in children with DVD. Our findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2.

410 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
14 Mar 1997-Science
TL;DR: Findings in this work indicate that dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events can be understood through quantitative theories of adaptive optimizing control.
Abstract: The capacity to predict future events permits a creature to detect, model, and manipulate the causal structure of its interactions with its environment. Behavioral experiments suggest that learning is driven by changes in the expectations about future salient events such as rewards and punishments. Physiological work has recently complemented these studies by identifying dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events. Taken together, these findings can be understood through quantitative theories of adaptive optimizing control.

8,163 citations

Journal Article
TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).

2,554 citations

Journal ArticleDOI
01 Jan 1966
TL;DR: Koestler as mentioned in this paper examines the idea that we are at our most creative when rational thought is suspended, for example, in dreams and trancelike states, and concludes that "the act of creation is the most creative act in human history".
Abstract: While the study of psychology has offered little in the way of explaining the creative process, Koestler examines the idea that we are at our most creative when rational thought is suspended--for example, in dreams and trancelike states. All who read The Act of Creation will find it a compelling and illuminating book.

2,201 citations

01 Jan 2005
TL;DR: In “Constructing a Language,” Tomasello presents a contrasting theory of how the child acquires language: It is not a universal grammar that allows for language development, but two sets of cognitive skills resulting from biological/phylogenetic adaptations are fundamental to the ontogenetic origins of language.
Abstract: Child psychiatrists, pediatricians, and other child clinicians need to have a solid understanding of child language development. There are at least four important reasons that make this necessary. First, slowing, arrest, and deviation of language development are highly associated with, and complicate the course of, child psychopathology. Second, language competence plays a crucial role in emotional and mood regulation, evaluation, and therapy. Third, language deficits are the most frequent underpinning of the learning disorders, ubiquitous in our clinical populations. Fourth, clinicians should not confuse the rich linguistic and dialectal diversity of our clinical populations with abnormalities in child language development. The challenge for the clinician becomes, then, how to get immersed in the captivating field of child language acquisition without getting overwhelmed by its conceptual and empirical complexity. In the past 50 years and since the seminal works of Roger Brown, Jerome Bruner, and Catherine Snow, child language researchers (often known as developmental psycholinguists) have produced a remarkable body of knowledge. Linguists such as Chomsky and philosophers such as Grice have strongly influenced the science of child language. One of the major tenets of Chomskian linguistics (known as generative grammar) is that children’s capacity to acquire language is “hardwired” with “universal grammar”—an innate language acquisition device (LAD), a language “instinct”—at its core. This view is in part supported by the assertion that the linguistic input that children receive is relatively dismal and of poor quality relative to the high quantity and quality of output that they manage to produce after age 2 and that only an advanced, innate capacity to decode and organize linguistic input can enable them to “get from here (prelinguistic infant) to there (linguistic child).” In “Constructing a Language,” Tomasello presents a contrasting theory of how the child acquires language: It is not a universal grammar that allows for language development. Rather, human cognition universals of communicative needs and vocal-auditory processing result in some language universals, such as nouns and verbs as expressions of reference and predication (p. 19). The author proposes that two sets of cognitive skills resulting from biological/phylogenetic adaptations are fundamental to the ontogenetic origins of language. These sets of inherited cognitive skills are intentionreading on the one hand and pattern-finding, on the other. Intention-reading skills encompass the prelinguistic infant’s capacities to share attention to outside events with other persons, establishing joint attentional frames, to understand other people’s communicative intentions, and to imitate the adult’s communicative intentions (an intersubjective form of imitation that requires symbolic understanding and perspective-taking). Pattern-finding skills include the ability of infants as young as 7 months old to analyze concepts and percepts (most relevant here, auditory or speech percepts) and create concrete or abstract categories that contain analogous items. Tomasello, a most prominent developmental scientist with research foci on child language acquisition and on social cognition and social learning in children and primates, succinctly and clearly introduces the major points of his theory and his views on the origins of language in the initial chapters. In subsequent chapters, he delves into the details by covering most language acquisition domains, namely, word (lexical) learning, syntax, and morphology and conversation, narrative, and extended discourse. Although one of the remaining domains (pragmatics) is at the core of his theory and permeates the text throughout, the relative paucity of passages explicitly devoted to discussing acquisition and proBOOK REVIEWS

1,757 citations