scispace - formally typeset
Search or ask a question
Author

Constantí Stefanescu

Bio: Constantí Stefanescu is an academic researcher from Autonomous University of Barcelona. The author has contributed to research in topics: Population & Butterfly. The author has an hindex of 31, co-authored 98 publications receiving 6687 citations. Previous affiliations of Constantí Stefanescu include Spanish National Research Council & American Museum of Natural History.


Papers
More filters
Journal ArticleDOI
10 Jun 1999-Nature
TL;DR: The authors showed that migratory species can respond rapidly to yearly climate variation, and further global warming is predicted to continue for the next 50-100 years, and some migratory animals can respond quickly to climate variation.
Abstract: Mean global temperatures have risen this century, and further warming is predicted to continue for the next 50-100 years(1-3) Some migratory species can respond rapidly to yearly climate variation ...

2,162 citations

Journal ArticleDOI
TL;DR: Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.
Abstract: Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.

1,114 citations

Journal ArticleDOI
TL;DR: Present-day species richness of long-lived vascular plant specialists was better explained by past than current landscape patterns, indicating an extinction debt, while short-lived butterfly specialists showed no evidence for an extinction Debt at a time scale of c.
Abstract: Intensification or abandonment of agricultural land use has led to a severe decline of semi-natural habitats across Europe. This can cause immediate loss of species but also time-delayed extinctions, known as the extinction debt. In a pan-European study of 147 fragmented grassland remnants, we found differences in the extinction debt of species from different trophic levels. Present-day species richness of long-lived vascular plant specialists was better explained by past than current landscape patterns, indicating an extinction debt. In contrast, short-lived butterfly specialists showed no evidence for an extinction debt at a time scale of c. 40 years. Our results indicate that management strategies maintaining the status quo of fragmented habitats are insufficient, as time-delayed extinctions and associated co-extinctions will lead to further biodiversity loss in the future.

694 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified the yearly change in community composition in response to climate change for 9,490 bird and 2,130 butterfly communities distributed across Europe and found that changes in community compositions are rapid but different between birds and butterflies and equivalent to a 37 and 114 km northward shift in bird and butterfly communities, respectively.
Abstract: Climate changes have profound effects on the distribution of numerous plant and animal species(1-3). However, whether and how different taxonomic groups are able to track climate changes at large spatial scales is still unclear. Here, we measure and compare the climatic debt accumulated by bird and butterfly communities at a European scale over two decades (1990-2008). We quantified the yearly change in community composition in response to climate change for 9,490 bird and 2,130 butterfly communities distributed across Europe(4). We show that changes in community composition are rapid but different between birds and butterflies and equivalent to a 37 and 114 km northward shift in bird and butterfly communities, respectively. We further found that, during the same period, the northward shift in temperature in Europe was even faster, so that the climatic debts of birds and butterflies correspond to a 212 and 135 km lag behind climate. Our results indicate both that birds and butterflies do not keep up with temperature increase and the accumulation of different climatic debts for these groups at national and continental scales.

623 citations

Journal ArticleDOI
TL;DR: It is predicted that varying degrees of phenological flexibility may account for differences in species' responses and, for multivoltine species, predict strong selection favouring local seasonal adaptations such as diapause phenomena or migratory behaviour.
Abstract: Phenological changes in response to climatic warming have been detected across a wide range of organisms. Butterflies stand out as one of the most popular groups of indicators of climatic change, given that, firstly, they are poikilothermic and, secondly, have been the subject of thorough monitoring programmes in several countries for a number of decades. Here we provide for the first time strong evidence of phenological change as a consequence of recent climatic warming in butterflies at a Spanish site in the northwest Mediterranean Basin. By means of the widely used Butterfly Monitoring Scheme methodology, three different phenological parameters were analysed for the most common species to test for trends over time and relationships with temperature and precipitation. Between 1988 and 2002, there was a tendency for earlier first appearance dates in all 17 butterfly species tested, and significant advances in mean flight dates in 8 out of 19 species. On the other hand, the shape of the curve of adult emergence did not show any regular pattern. These changes paralleled an increase of 1–1.5°C in mean February, March and June temperatures. Likewise, a correlation analysis indicated the strong negative effect of spring temperature on phenological parameters (i.e. higher temperatures tended to produce phenological advances), and the opposite effect of precipitation in certain months. In addition, there was some evidence to indicate that phenological responses may differ between taxonomic lineages or species with similar diets. We discuss the consequences that these changes may have on species' population abundances, especially given the expected increase in aridity in the Mediterranean Basin caused by current climatic warming. We predict that varying degrees of phenological flexibility may account for differences in species' responses and, for multivoltine species, predict strong selection favouring local seasonal adaptations such as diapause phenomena or migratory behaviour.

271 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: A review of the ecological impacts of recent climate change exposes a coherent pattern of ecological change across systems, from polar terrestrial to tropical marine environments.
Abstract: There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.

9,369 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations