scispace - formally typeset
Search or ask a question
Author

Constantine Gatsonis

Bio: Constantine Gatsonis is an academic researcher from Brown University. The author has contributed to research in topics: Mammography & Breast cancer. The author has an hindex of 94, co-authored 245 publications receiving 47918 citations. Previous affiliations of Constantine Gatsonis include Rutgers University & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: Screening with the use of low-dose CT reduces mortality from lung cancer, as compared with the radiography group, and the rate of death from any cause was reduced.
Abstract: Background The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. Methods From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. Results The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Conclusions Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).

7,710 citations

Journal ArticleDOI
04 Jan 2003-BMJ
TL;DR: If medical journals adopt the STARD checklist and flow diagram, the quality of reporting of studies of diagnostic accuracy should improve to the advantage of clinicians, researchers, reviewers, journals, and the public.
Abstract: Objective: To improve the accuracy and completeness of reporting of studies of diagnostic accuracy, to allow readers to assess the potential for bias in a study, and to evaluate a study9s generalisability. Methods: The Standards for Reporting of Diagnostic Accuracy (STARD) steering committee searched the literature to identify publications on the appropriate conduct and reporting of diagnostic studies and extracted potential items into an extensive list. Researchers, editors, and members of professional organisations shortened this list during a two day consensus meeting, with the goal of developing a checklist and a generic flow diagram for studies of diagnostic accuracy. Results: The search for published guidelines about diagnostic research yielded 33 previously published checklists, from which we extracted a list of 75 potential items. At the consensus meeting, participants shortened the list to a 25 item checklist, by using evidence, whenever available. A prototype of a flow diagram provides information about the method of patient recruitment, the order of test execution, and the numbers of patients undergoing the test under evaluation and the reference standard, or both. Conclusions: Evaluation of research depends on complete and accurate reporting. If medical journals adopt the STARD checklist and flow diagram, the quality of reporting of studies of diagnostic accuracy should improve to the advantage of clinicians, researchers, reviewers, journals, and the public. The Standards for Reporting of Diagnostic Accuracy (STARD) steering group aims to improve the accuracy and completeness of reporting of studies of diagnostic accuracy. The group describes and explains the development of a checklist and flow diagram for authors of reports

2,550 citations

Journal ArticleDOI
28 Oct 2015-BMJ
TL;DR: STARD 2015 is presented, an updated list of 30 essential items that should be included in every report of a diagnostic accuracy study, which incorporates recent evidence about sources of bias and variability in diagnostic accuracy.
Abstract: Incomplete reporting has been identified as a major source of avoidable waste in biomedical research. Essential information is often not provided in study reports, impeding the identification, critical appraisal, and replication of studies. To improve the quality of reporting of diagnostic accuracy studies, the Standards for Reporting Diagnostic Accuracy (STARD) statement was developed. Here we present STARD 2015, an updated list of 30 essential items that should be included in every report of a diagnostic accuracy study. This update incorporates recent evidence about sources of bias and variability in diagnostic accuracy and is intended to facilitate the use of STARD. As such, STARD 2015 may help to improve completeness and transparency in reporting of diagnostic accuracy studies.

2,116 citations

Journal ArticleDOI
TL;DR: The overall diagnostic accuracy of digital and film mammography as a means of screening for breast cancer is similar, but digital mammography is more accurate in women under the age of 50 years, women with radiographically dense breasts, and premenopausal or perimenopausal women.
Abstract: background Film mammography has limited sensitivity for the detection of breast cancer in women with radiographically dense breasts. We assessed whether the use of digital mammography would avoid some of these limitations. methods A total of 49,528 asymptomatic women presenting for screening mammography at 33 sites in the United States and Canada underwent both digital and film mammography. All relevant information was available for 42,760 of these women (86.3 percent). Mammograms were interpreted independently by two radiologists. Breast-cancer status was ascertained on the basis of a breast biopsy done within 15 months after study entry or a follow-up mammogram obtained at least 10 months after study entry. Receiver-operating-characteristic (ROC) analysis was used to evaluate the results. results In the entire population, the diagnostic accuracy of digital and film mammography was similar (difference between methods in the area under the ROC curve, 0.03; 95 percent confidence interval, i0.02 to 0.08; P=0.18). However, the accuracy of digital mammography was significantly higher than that of film mammography among women under the age of 50 years (difference in the area under the curve, 0.15; 95 percent confidence interval, 0.05 to 0.25; P=0.002), women with heterogeneously dense or extremely dense breasts on mammography (difference, 0.11; 95 percent confidence interval, 0.04 to 0.18; P=0.003), and premenopausal or perimenopausal women (difference, 0.15; 95 percent confidence interval, 0.05 to 0.24; P=0.002). conclusions The overall diagnostic accuracy of digital and film mammography as a means of screening for breast cancer is similar, but digital mammography is more accurate in women under the age of 50 years, women with radiographically dense breasts, and premenopausal or perimenopausal women. (clinicaltrials.gov number, NCT00008346.)

1,685 citations

Journal ArticleDOI
23 Jan 2018-JAMA
TL;DR: A group of 24 multidisciplinary experts used a systematic review of articles on existing reporting guidelines and methods, a 3-round Delphi process, a consensus meeting, pilot testing, and iterative refinement to develop the PRISMA diagnostic test accuracy guideline.
Abstract: Importance Systematic reviews of diagnostic test accuracy synthesize data from primary diagnostic studies that have evaluated the accuracy of 1 or more index tests against a reference standard, provide estimates of test performance, allow comparisons of the accuracy of different tests, and facilitate the identification of sources of variability in test accuracy. Objective To develop the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagnostic test accuracy guideline as a stand-alone extension of the PRISMA statement. Modifications to the PRISMA statement reflect the specific requirements for reporting of systematic reviews and meta-analyses of diagnostic test accuracy studies and the abstracts for these reviews. Design Established standards from the Enhancing the Quality and Transparency of Health Research (EQUATOR) Network were followed for the development of the guideline. The original PRISMA statement was used as a framework on which to modify and add items. A group of 24 multidisciplinary experts used a systematic review of articles on existing reporting guidelines and methods, a 3-round Delphi process, a consensus meeting, pilot testing, and iterative refinement to develop the PRISMA diagnostic test accuracy guideline. The final version of the PRISMA diagnostic test accuracy guideline checklist was approved by the group. Findings The systematic review (produced 64 items) and the Delphi process (provided feedback on 7 proposed items; 1 item was later split into 2 items) identified 71 potentially relevant items for consideration. The Delphi process reduced these to 60 items that were discussed at the consensus meeting. Following the meeting, pilot testing and iterative feedback were used to generate the 27-item PRISMA diagnostic test accuracy checklist. To reflect specific or optimal contemporary systematic review methods for diagnostic test accuracy, 8 of the 27 original PRISMA items were left unchanged, 17 were modified, 2 were added, and 2 were omitted. Conclusions and Relevance The 27-item PRISMA diagnostic test accuracy checklist provides specific guidance for reporting of systematic reviews. The PRISMA diagnostic test accuracy guideline can facilitate the transparent reporting of reviews, and may assist in the evaluation of validity and applicability, enhance replicability of reviews, and make the results from systematic reviews of diagnostic test accuracy studies more useful.

1,616 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: A structured summary is provided including, as applicable, background, objectives, data sources, study eligibility criteria, participants, interventions, study appraisal and synthesis methods, results, limitations, conclusions and implications of key findings.

31,379 citations