scispace - formally typeset
Search or ask a question
Author

Constantinos N. Maganaris

Bio: Constantinos N. Maganaris is an academic researcher from Liverpool John Moores University. The author has contributed to research in topics: Tendon & Isometric exercise. The author has an hindex of 71, co-authored 198 publications receiving 14897 citations. Previous affiliations of Constantinos N. Maganaris include University of Aberdeen & Manchester Metropolitan University.


Papers
More filters
Journal ArticleDOI
TL;DR: Two important features emerged: the muscle contracted near–isometrically in the stance phase, with the fascicles operating at ca.
Abstract: In the present study we investigated in vivo length changes in the fascicles and tendon of the human gastrocnemius medialis (GM) muscle during walking. The experimental protocol involved real-time ultrasound scanning of the GM muscle, recording of the electrical activity of the muscle, measurement of knee- and ankle-joint rotations, and measurement of ground reaction forces in six men during walking at 3 km h(-1) on a treadmill. Fascicular lengths were measured from the sonographs recorded. Musculotendon complex length changes were estimated from anatomical and joint kinematic data. Tendon length changes were obtained combining the musculotendon complex and fascicular length-change data. The fascicles followed a different length-change pattern from those of the musculotendon complex and tendon throughout the step cycle. Two important features emerged: (i) the muscle contracted near-isometrically in the stance phase, with the fascicles operating at ca. 50 mm; and (ii) the tendon stretched by ca. 7 mm during single support, and recoiled in push-off. The behaviour of the muscle in our experiment indicates consumption of minimal metabolic energy for eliciting the contractile forces required to support and displace the body. On the other hand, the spring-like behaviour of the tendon indicates storage and release of elastic-strain energy. Either of the two mechanisms would favour locomotor economy

593 citations

Journal ArticleDOI
TL;DR: It is demonstrated that aging significantly affects human skeletal muscle architecture and these structural alterations are expected to have implications for muscle function in old age.
Abstract: The effect of aging on human gastrocnemius medialis (GM) muscle architecture was evaluated by comparing morphometric measurements on 14 young (aged 27-42 yr) and on 16 older (aged 70-81 yr) physically active men, matched for height, body mass, and physical activity. GM muscle anatomic cross-sectional area (ACSA) and volume (Vol) were measured by computerized tomography, and GM fascicle length (Lf) and pennation angle (theta) were assessed by ultrasonography. GM physiological cross-sectional area (PCSA) was calculated as the ratio of Vol/Lf. In the elderly, ACSA and Vol were, respectively, 19.1% (P < 0.005) and 25.4% (P < 0.001) smaller than in the young adults. Also, Lf and were found to be smaller in the elderly group by 10.2% (P < 0.01) and 13.2% (P < 0.01), respectively. When the data for the young and elderly adults were pooled together, significantly correlated with ACSA (P < 0.05). Because of the reduced Vol and Lf in the elderly group, the resulting PCSA was found to be 15.2% (P < 0.05) smaller. In conclusion, this study demonstrates that aging significantly affects human skeletal muscle architecture. These structural alterations are expected to have implications for muscle function in old age.

508 citations

Journal ArticleDOI
TL;DR: Results are in agreement with previous reports on in vitro testing of isolated tendons and suggest that under physiological loading the TA tendon operates within the elastic ‘toe’ region.
Abstract: 1. The aim of the present study was to measure the mechanical properties of human tibialis anterior (TA) tendon in vivo. 2. Measurements were taken in five males at the neutral ankle position and involved: (a) isometric dynamometry upon increasing the voltage of percutaneous electrical stimulation of the TA muscle, (b) real-time ultrasonography for measurements of the TA tendon origin displacement during contraction and tendon cross-sectional area, and (c) magnetic resonance imaging for estimation of the TA tendon length and moment arm. 3. From the measured joint moments and estimated moment arms, the values of tendon force were calculated and divided by cross-sectional area to obtain stress values. The displacements of the TA tendon origin from rest to all contraction intensities were normalized to tendon length to obtain strain values. From the data obtained, the tendon force-displacement and stress-strain relationships were determined and the tendon stiffness and Young's modulus were calculated. 4. Tendon force and stress increased curvilinearly as a function of displacement and strain, respectively. The tendon force and displacement at maximum isometric load were 530 N and 4.1 mm, and the corresponding stress and strain values were 25 MPa and 2.5 %, respectively. The tendon stiffness and Young's modulus at maximum isometric load were 161 N mm-1 and 1.2 GPa, respectively. These results are in agreement with previous reports on in vitro testing of isolated tendons and suggest that under physiological loading the TA tendon operates within the elastic 'toe' region.

476 citations

Journal ArticleDOI
TL;DR: It is shown for the first time that strength training in old age increases the stiffness and Young's modulus of human tendons and has implications for contractile force production and the rapid execution of motor tasks.
Abstract: This study investigated the effect of strength training on the mechanical properties of the human patella tendon of older individuals. Subjects were assigned to training (n = 9; age 74.3 +/- 3.5 years, body mass 69.7 +/- 14.8 kg and height 163.4 +/- 9.1 cm, mean +/- S.D.) and control (n = 9; age 67.1 +/- 2 years, body mass 73.5 +/- 14.9 kg and height 168.3 +/- 11.5 cm) groups. Strength training (two series of 10 repetitions at 80 % of five-repetition maximum) was performed three times per week for 14 weeks using leg extension and leg press exercises. Measurements of tendon elongation during a ramp isometric knee extension were performed before and after training and control periods in vivo using ultrasonography. Training caused a decreased tendon elongation and strain at all levels of force and stress (P 0.05). This study shows for the first time that strength training in old age increases the stiffness and Young's modulus of human tendons. This may reduce the risk of tendon injury in old age and has implications for contractile force production and the rapid execution of motor tasks.

474 citations

Journal ArticleDOI
TL;DR: The present findings justify the application of the ULT method for the detection of changes throughout large muscles in response to training, disuse or as a consequence of sarcopenia.
Abstract: The measurement of human muscle size is essential when assessing the effects of training, disuse and ageing. The considered 'gold standard' for cross-sectional area measurements of muscle size is magnetic resonance imaging (MRI). However, MRI is costly and often inaccessible. The aim of the present study was to test the reproducibility and validity of a more accessible alternative method using ultrasonography (ULT). We examined the cross-sectional areas in the vastus lateralis muscle of six individuals. Axial-plane ULT scans were taken at given levels along the entire muscle length. The ULT scanning was repeated on different days (reliability) and validated against MRI-based measurements. Mean intraclass correlation coefficients were 0.998 for the reliability of ULT and 0.999 for the validity of ULT against MRI. The coefficient of variation values for cross-sectional area measurements assessed by six different experimenters were 2.1% and 0.8% for images obtained with ULT and MRI, respectively. The ULT method is a valid and reliable alternative tool for assessing cross-sectional areas of large individual human muscles. The present findings justify the application of the ULT method for the detection of changes throughout large muscles in response to training, disuse or as a consequence of sarcopenia.

433 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans.
Abstract: The purpose of this Position Stand is to provide an overview of issues critical to understanding the importance of exercise and physical activity in older adult populations. The Position Stand is divided into three sections: Section 1 briefly reviews the structural and functional changes that characterize normal human aging, Section 2 considers the extent to which exercise and physical activity can influence the aging process, and Section 3 summarizes the benefits of both long-term exercise and physical activity and shorter-duration exercise programs on health and functional capacity. Although no amount of physical activity can stop the biological aging process, there is evidence that regular exercise can minimize the physiological effects of an otherwise sedentary lifestyle and increase active life expectancy by limiting the development and progression of chronic disease and disabling conditions. There is also emerging evidence for significant psychological and cognitive benefits accruing from regular exercise participation by older adults. Ideally, exercise prescription for older adults should include aerobic exercise, muscle strengthening exercises, and flexibility exercises. The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans. All older adults should engage in regular physical activity and avoid an inactive lifestyle.

4,264 citations

Journal ArticleDOI
TL;DR: Sarcopenia should be considered in all older patients who present with observed declines in physical function, strength, or overall health, and patients who meet these criteria should further undergo body composition assessment using dual energy x-ray absorptiometry with sarcopenia being defined using currently validated definitions.

2,378 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism is presented, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology.
Abstract: The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis an...

2,332 citations

Journal Article
TL;DR: This beautifully printed and well-illustrated stiff paperbacked volume is, and will for a few years yet remain, an invaluable companion to a full-scale textbook on congenital heart disease.
Abstract: argument is often, if not acrimonious, at least heated. It gives an impression of the fluidity of opinion on many fundamental ideas under discussion and of the urgency with which cardiac cyanosis in the newborn is regarded. When Dr. William Muscott says that the earliest he has operated for pulmonary stenosis is on an infant 3 days old, and Sir Russell Brock agrees that the earlier in the first month that operation is undertaken the better, and when Dr. Varco asks Dr. Senning 'so far as I know they have never yet catheterized any child intrauterine in Sweden, but they have done it through the delivery canal sometimes-would you tell us the indications of the Scandinavian group for catheterization in the immediate newborn period?', one is indeed being kept up with the times. But that was two years ago and already some of the questions then debated have since been answered. This beautifully printed and well-illustrated stiff paperbacked volume is, and will for a few years yet remain, an invaluable companion to a full-scale textbook on congenital heart disease.

1,394 citations

Journal ArticleDOI
TL;DR: How diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue is discussed in detail.
Abstract: Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT) and mitogen-activated protein kinase (MAPK) activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue.

1,386 citations