scispace - formally typeset
Search or ask a question
Author

Constantinos Skordis

Bio: Constantinos Skordis is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Dark energy & Dark matter. The author has an hindex of 41, co-authored 80 publications receiving 11302 citations. Previous affiliations of Constantinos Skordis include Perimeter Institute for Theoretical Physics & University of Oxford.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.

3,674 citations

Posted Content
René J. Laureijs, Jérôme Amiaux, S. Arduini1, J.-L. Auguères  +217 moreInstitutions (14)
TL;DR: Euclid as mentioned in this paper is a space-based survey mission from the European Space Agency designed to understand the origin of the universe's accelerating expansion, using cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures.
Abstract: Euclid is a space-based survey mission from the European Space Agency designed to understand the origin of the Universe's accelerating expansion. It will use cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures on the geometry of the universe and on the cosmic history of structure formation. The mission is optimised for two independent primary cosmological probes: Weak gravitational Lensing (WL) and Baryonic Acoustic Oscillations (BAO). The Euclid payload consists of a 1.2 m Korsch telescope designed to provide a large field of view. It carries two instruments with a common field-of-view of ~0.54 deg2: the visual imager (VIS) and the near infrared instrument (NISP) which contains a slitless spectrometer and a three bands photometer. The Euclid wide survey will cover 15,000 deg2 of the extragalactic sky and is complemented by two 20 deg2 deep fields. For WL, Euclid measures the shapes of 30-40 resolved galaxies per arcmin2 in one broad visible R+I+Z band (550-920 nm). The photometric redshifts for these galaxies reach a precision of dz/(1+z) \lt 0.05. They are derived from three additional Euclid NIR bands (Y, J, H in the range 0.92-2.0 micron), complemented by ground based photometry in visible bands derived from public data or through engaged collaborations. The BAO are determined from a spectroscopic survey with a redshift accuracy dz/(1+z) =0.001. The slitless spectrometer, with spectral resolution ~250, predominantly detects Ha emission line galaxies. Euclid is a Medium Class mission of the ESA Cosmic Vision 2015-2025 programme, with a foreseen launch date in 2019. This report (also known as the Euclid Red Book) describes the outcome of the Phase A study.

1,213 citations

Journal ArticleDOI
Luca Amendola1, Stephen Appleby2, Anastasios Avgoustidis3, David Bacon4, Tessa Baker5, Marco Baldi6, Marco Baldi7, Marco Baldi8, Nicola Bartolo9, Nicola Bartolo8, Alain Blanchard10, Camille Bonvin11, Stefano Borgani12, Stefano Borgani8, Enzo Branchini13, Enzo Branchini8, Clare Burrage3, Stefano Camera, Carmelita Carbone14, Carmelita Carbone8, Luciano Casarini15, Luciano Casarini16, Mark Cropper17, Claudia de Rham18, J. P. Dietrich19, Cinzia Di Porto, Ruth Durrer11, Anne Ealet, Pedro G. Ferreira5, Fabio Finelli8, Juan Garcia-Bellido20, Tommaso Giannantonio19, Luigi Guzzo8, Luigi Guzzo14, Alan Heavens18, Lavinia Heisenberg21, Catherine Heymans22, Henk Hoekstra23, Lukas Hollenstein, Rory Holmes, Zhiqi Hwang24, Knud Jahnke25, Thomas D. Kitching17, Tomi S. Koivisto26, Martin Kunz11, Giuseppe Vacca27, Eric V. Linder28, M. March29, Valerio Marra30, Carlos Martins31, Elisabetta Majerotto11, Dida Markovic32, David J. E. Marsh33, Federico Marulli6, Federico Marulli8, Richard Massey34, Yannick Mellier35, Francesco Montanari36, David F. Mota16, Nelson J. Nunes37, Will J. Percival32, Valeria Pettorino38, Valeria Pettorino39, Cristiano Porciani, Claudia Quercellini, Justin I. Read40, Massimiliano Rinaldi41, Domenico Sapone42, Ignacy Sawicki43, Roberto Scaramella, Constantinos Skordis44, Constantinos Skordis43, Fergus Simpson45, Andy Taylor22, Shaun A. Thomas, Roberto Trotta18, Licia Verde45, Filippo Vernizzi38, Adrian Vollmer, Yun Wang46, Jochen Weller19, T. G. Zlosnik47 
TL;DR: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program as discussed by the authors, which will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shift of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.
Abstract: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

1,211 citations

René J. Laureijs, Jérôme Amiaux, S. Arduini1, J.-L. Auguères  +217 moreInstitutions (14)
14 Oct 2011
TL;DR: Euclid as discussed by the authors is a space-based survey mission from the European Space Agency designed to understand the origin of the universe's accelerating expansion, using cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures.
Abstract: Euclid is a space-based survey mission from the European Space Agency designed to understand the origin of the Universe's accelerating expansion. It will use cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures on the geometry of the universe and on the cosmic history of structure formation. The mission is optimised for two independent primary cosmological probes: Weak gravitational Lensing (WL) and Baryonic Acoustic Oscillations (BAO). The Euclid payload consists of a 1.2 m Korsch telescope designed to provide a large field of view. It carries two instruments with a common field-of-view of ~0.54 deg2: the visual imager (VIS) and the near infrared instrument (NISP) which contains a slitless spectrometer and a three bands photometer. The Euclid wide survey will cover 15,000 deg2 of the extragalactic sky and is complemented by two 20 deg2 deep fields. For WL, Euclid measures the shapes of 30-40 resolved galaxies per arcmin2 in one broad visible R+I+Z band (550-920 nm). The photometric redshifts for these galaxies reach a precision of dz/(1+z) < 0.05. They are derived from three additional Euclid NIR bands (Y, J, H in the range 0.92-2.0 micron), complemented by ground based photometry in visible bands derived from public data or through engaged collaborations. The BAO are determined from a spectroscopic survey with a redshift accuracy dz/(1+z) =0.001. The slitless spectrometer, with spectral resolution ~250, predominantly detects Ha emission line galaxies. Euclid is a Medium Class mission of the ESA Cosmic Vision 2015-2025 programme, with a foreseen launch date in 2019. This report (also known as the Euclid Red Book) describes the outcome of the Phase A study.

1,189 citations

Journal ArticleDOI
TL;DR: This review is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission and discusses five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis.
Abstract: Euclid is a European Space Agency medium class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 programme. The main goal of Euclid is to understand the origin of the accelerated expansion of the Universe. Euclid will explore the expansion history of the Universe and the evolution of cosmic structures by measuring shapes and redshifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

896 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations

Journal ArticleDOI
TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

8,805 citations

Journal ArticleDOI
TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH density, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model: however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

6,002 citations