scispace - formally typeset
Search or ask a question
Author

Corey Radloff

Bio: Corey Radloff is an academic researcher from Rice University. The author has contributed to research in topics: Nanoshell & Plasmon. The author has an hindex of 11, co-authored 15 publications receiving 4424 citations.

Papers
More filters
Journal ArticleDOI
17 Oct 2003-Science
TL;DR: A simple and intuitive picture that describes the plasmon response of complex nanostructures of arbitrary shape is presented, an electromagnetic analog of molecular orbital theory, that can be understood as the interaction or "hybridization" of elementary plasmons supported by nanostructure of elementary geometries.
Abstract: We present a simple and intuitive picture, an electromagnetic analog of molecular orbital theory, that describes the plasmon response of complex nanostructures of arbitrary shape. Our model can be understood as the interaction or "hybridization" of elementary plasmons supported by nanostructures of elementary geometries. As an example, the approach is applied to the important case of a four-layer concentric nanoshell, where the hybridization of the plasmons of the inner and outer nanoshells determines the resonant frequencies of the multilayer nanostructure.

3,587 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined several physical mechanisms that influence the plasmon lineshape of nanoshells with diameters of 100-250 nm, including phase retardation effects, inhomogeneous broadening due to core and shell size distributions, and electron scattering at the shell interfaces.
Abstract: Nanoshells are mesoscopic particles consisting of a dielectric core coated with a metal shell, in particular gold or silver, of uniform nanometer scale thickness. This topology supports plasmon excitations with frequencies that are sensitively dependent on the relative radii of the nanoparticle's core and shell. The plasmon linewidth for this geometry is typically quite broad, nominally 100 nm or more in wavelength at plasmon resonance wavelengths in the near infrared. Several distinct physical mechanisms control the plasmon lineshape: phase retardation effects, including multipolar plasmon contributions; inhomogeneous broadening due to core and shell size distributions; and electron scattering at the shell interfaces. These mechanisms are examined in terms of their relative contributions to the plasmon line shape for nanoshells fabricated with diameters of 100--250 nm.

224 citations

Journal ArticleDOI
TL;DR: In this article, the first nanoscale images of single wall nanotubes (SWNTs) whose sidewalls have been chemically derivatized were obtained using tunneling microscopy (STM) images.

217 citations

Journal ArticleDOI
TL;DR: In this paper, the plasmonic properties of a concentric nanoshell, or nanomatryushka, were investigated in terms of dipolar and higher order multipolar hybridized modes.
Abstract: The plasmonic properties of a concentric nanoshell, or “nanomatryushka”, are investigated. The plasmon resonant modes are analyzed in terms of the plasmon hybridization model, where new resonances occur due to a hybridization of the plasmon modes of the inner metallic shell with those of the outer metallic shell. The plasmon resonant spectra of experimentally realized concentric nanoshells are analyzed in terms of dipolar and higher order multipolar hybridized plasmon modes. A size-dependent asymmetry in the splitting of the hybridized plasmon states is observed, which is related to phase retardation effects due to the nanostructure's finite size.

209 citations

Journal ArticleDOI
TL;DR: In this paper, a general chemical strategy for producing reduced-symmetry metallodielectric nanoparticles, nanocups, and nanocaps that combines nanoscale masking techniques and nanoparticle-seeded electroless plating is reported.
Abstract: We report a general chemical strategy for producing reduced-symmetry metallodielectric nanoparticles, nanocups, and nanocaps that combines nanoscale masking techniques and nanoparticle-seeded electroless plating. Using this approach, silica nanoparticles with a gold cup-shaped shell and, alternatively, a gold cap, are obtained. The plasmon response of both nanostructures is a sensitive function of orientation of the nanostructure with respect to the direction and polarization of incident light. This orientation dependence is examined experimentally by studying the extinction spectra of oriented nanocups and nanocaps on transparent substrates, and is also evaluated theoretically using a three-dimensional finite difference time domain (FDTD) method.

175 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Journal ArticleDOI
TL;DR: How the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications is emphasized.
Abstract: Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, takin...

3,617 citations