scispace - formally typeset
Search or ask a question
Author

Corinne Fournier

Bio: Corinne Fournier is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Digital holography & Holography. The author has an hindex of 16, co-authored 67 publications receiving 1056 citations. Previous affiliations of Corinne Fournier include Télécom Saint-Étienne & Jean Monnet University.


Papers
More filters
Journal ArticleDOI
TL;DR: This Letter suggests the use of a sparsity-promoting prior, verified in many inline holography applications, and presents a simple iterative algorithm for 3D object reconstruction under sparsity and positivity constraints.
Abstract: Inline digital holograms are classically reconstructed using linear operators to model diffraction. It has long been recognized that such reconstruction operators do not invert the hologram formation operator. Classical linear reconstructions yield images with artifacts such as distortions near the field-of-view boundaries or twin images. When objects located at different depths are reconstructed from a hologram, in-focus and out-of-focus images of all objects superimpose upon each other. Additional processing, such as maximum-of-focus detection, is thus unavoidable for any successful use of the reconstructed volume. In this Letter, we consider inverting the hologram formation model in a Bayesian framework. We suggest the use of a sparsity-promoting prior, verified in many inline holography applications, and present a simple iterative algorithm for 3D object reconstruction under sparsity and positivity constraints. Preliminary results with both simulated and experimental holograms are highly promising.

163 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a microparticle localization scheme in digital holography based on the inverse-problems approach, which yields the optimal particle set that best models the observed hologram image and resolves this global optimization problem by conventional particle detection followed by a local refinement for each particle.
Abstract: We propose a microparticle localization scheme in digital holography Most conventional digital holography methods are based on Fresnel transform and present several problems such as twin-image noise, border effects, and other effects To avoid these difficulties, we propose an inverse-problem approach, which yields the optimal particle set that best models the observed hologram image We resolve this global optimization problem by conventional particle detection followed by a local refinement for each particle Results for both simulated and real digital holograms show strong improvement in the localization of the particles, particularly along the depth dimension In our simulations, the position precision is > or =1 microm rms Our results also show that the localization precision does not deteriorate for particles near the edge of the field of view

157 citations

Journal ArticleDOI
TL;DR: This work proposes a microparticle detection scheme in digital holography by considering the camera as a truncated version of a wider sensor, and estimates the optimal particles set that best models the observed hologram image.
Abstract: We propose a microparticle detection scheme in digital holography. In our inverse problem approach, we estimate the optimal particles set that best models the observed hologram image. Such a method can deal with data that have missing pixels. By considering the camera as a truncated version of a wider sensor, it becomes possible to detect particles even out of the camera field of view. We tested the performance of our algorithm against simulated and experimental data for diluted particle conditions. With real data, our algorithm can detect particles far from the detector edges in a working area as large as 16 times the camera field of view. A study based on simulated data shows that, compared with classical methods, our algorithm greatly improves the precision of the estimated particle positions and radii. This precision does not depend on the particle's size or location (i.e., whether inside or outside the detector field of view).

86 citations

Proceedings ArticleDOI
TL;DR: Methods to improve numerically the reconstructed images by twin-image reduction are described, which are of great importance in in-line holography where spatial elimination of the twin- image cannot be carried out as in off-axis holographY.
Abstract: In-line digital holography conciles the applicative interest of a simple optical set-up with the speed, low cost and potential of digital reconstruction. We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin-image cannot be carried out as in off-axis holography. Applications in digital holography of particle fields greatly depend on its suppression to reach greater particle concentrations, keeping a sufficient signal to noise ratio in reconstructed images. We describe in this paper methods to improve numerically the reconstructed images by twin-image reduction.

78 citations

Journal ArticleDOI
TL;DR: In this article, a unified description of existing digital suppression methods is given in the light of deconvolution techniques, and an iterative algorithm is proposed to enhance the reconstructed images from a digital hologram of small objects.
Abstract: We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin image cannot be carried out as in off-axis holography. A unifying description of existing digital suppression methods is given in the light of deconvolution techniques. Holograms of objects spread in 3D cannot be processed through available approaches. We suggest an iterative algorithm and demonstrate its efficacy on both simulated and real data. This method is suitable to enhance the reconstructed images from a digital hologram of small objects.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image, which can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics.
Abstract: We report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth of focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 µm, a field of view of ∼120 mm^2 and a resolution-invariant depth of focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify successful FPM operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation.

1,363 citations

Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

Journal ArticleDOI
TL;DR: Unique features of lens-free computational imaging tools are discussed and some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture of ∼0.8–0.9 across a field of view (FOV) of more than 20 mm2, which corresponds to an image with more than 1.5 gigapixels.
Abstract: In this perspective, the authors present the basic features of lens-free computational imaging tools and report performance comparisons with conventional microscopy methods. They also discuss the challenges that these computational on-chip microscopes face for their wide-scale biomedical application.

486 citations

Journal ArticleDOI
TL;DR: Digital holographic microscopy and Mie scattering theory are used to simultaneously characterize and track individual colloidal particles and measure their radius and refractive index.
Abstract: We use digital holographic microscopy and Mie scattering theory to simultaneously characterize and track individual colloidal particles. Each holographic snapshot provides enough information to measure a colloidal sphere's radius and refractive index to within 1%, and simultaneously to measure its three-dimensional position with nanometer in-plane precision and 10 nanometer axial resolution.

321 citations

01 Jan 2012
TL;DR: This work demonstrates single frame 3D tomography from 2D holographic data using compressed sampling, which enables signal reconstruction using less than one measurement per reconstructed signal value.
Abstract: Compressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography: estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field information with a small fill factor because object scattered fields are locally redundant. Incoherent image estimation is adopted for the expanded modulation transfer function and compressive reconstruction.

310 citations