scispace - formally typeset
Search or ask a question
Author

Corrado Maurini

Bio: Corrado Maurini is an academic researcher from University of Paris. The author has contributed to research in topics: Finite element method & Beam (structure). The author has an hindex of 29, co-authored 59 publications receiving 3222 citations. Previous affiliations of Corrado Maurini include Virginia Tech & Pierre-and-Marie-Curie University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modified regularized formulation of the Ambrosio-Tortorelli type was proposed to avoid crack interpenetration and predicts asymmetric results in traction and in compression.
Abstract: This paper presents a modified regularized formulation of the Ambrosio–Tortorelli type to introduce the crack non-interpenetration condition in the variational approach to fracture mechanics proposed by Francfort and Marigo [1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (8), 1319–1342]. We focus on the linear elastic case where the contact condition appears as a local unilateral constraint on the displacement jump at the crack surfaces. The regularized model is obtained by splitting the strain energy in a spherical and a deviatoric parts and accounting for the sign of the local volume change. The numerical implementation is based on a standard finite element discretization and on the adaptation of an alternate minimization algorithm used in previous works. The new regularization avoids crack interpenetration and predicts asymmetric results in traction and in compression. Even though we do not exhibit any gamma-convergence proof toward the desired limit behavior, we illustrate through several numerical case studies the pertinence of the new model in comparison to other approaches.

964 citations

Journal ArticleDOI
TL;DR: In this paper, a variational approach to brittle fracture approximates the crack evolution in an elastic solid through the use of gradient damage models, and a stability criterion in terms of the positivity of the second derivative of the total energy under the unilateral constraint induced by the irreversibility of damage is introduced.
Abstract: In its numerical implementation, the variational approach to brittle fracture approximates the crack evolution in an elastic solid through the use of gradient damage models. In this article, we first formulate the quasi-static evolution problem for a general class of such damage models. Then, we introduce a stability criterion in terms of the positivity of the second derivative of the total energy under the unilateral constraint induced by the irreversibility of damage. These concepts are applied in the particular setting of a one-dimensional traction test. We construct homogeneous as well as localized damage solutions in a closed form and illustrate the concepts of loss of stability, of scale effects, of damage localization, and of structural failure. Considering several specific constitutive models, stress

466 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use U-and V-notches to show that the nucleation load varies smoothly from that predicted by a strength criterion to that of a toughness criterion when the strength of the stress concentration or singularity varies.
Abstract: Phase-field models, sometimes referred to as gradient damage or smeared crack models, are widely used methods for the numerical simulation of crack propagation in brittle materials. Theoretical results and numerical evidences show that they can predict the propagation of a pre-existing crack according to Griffith’ criterion. For a one-dimensional problem, it has been shown that they can predict nucleation upon a critical stress, provided that the regularization parameter be identified with the material’s internal or characteristic length. In this article, we draw on numerical simulations to study crack nucleation in commonly encountered geometries for which closed-form solutions are not available. We use U- and V-notches to show that the nucleation load varies smoothly from that predicted by a strength criterion to that of a toughness criterion when the strength of the stress concentration or singularity varies. We present validation and verification numerical simulations for both types of geometries. We consider the problem of an elliptic cavity in an infinite or elongated domain to show that variational phase field models properly account for structural and material size effects. Our main claim, supported by validation and verification in a broad range of materials and geometries, is that crack nucleation can be accurately predicted by minimization of a nonlinear energy in variational phase field models, and does not require the introduction of ad-hoc criteria.

349 citations

Journal ArticleDOI
TL;DR: In this paper, a quasistatic gradient damage model was used to perform large-scale numerical simulations showing that the propagation of fully developed cracks follows Griffith criterion and depends only on the fracture toughness, while crack morphogenesis is driven by the material's internal length.
Abstract: We study the genesis and the selective propagation of complex crack networks induced by thermal shock or drying of brittle materials. We use a quasistatic gradient damage model to perform large-scale numerical simulations showing that the propagation of fully developed cracks follows Griffith criterion and depends only on the fracture toughness, while crack morphogenesis is driven by the material's internal length. Our numerical simulations feature networks of parallel cracks and selective arrest in two dimensions and hexagonal columnar joints in three dimensions, without any hypotheses on cracks geometry, and are in good agreement with available experimental results.

227 citations

Journal ArticleDOI
TL;DR: An automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques and it is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.
Abstract: Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis \((p<0.001, R^{2}= 0.95)\) was observed. The structural parameters of the Gasser–Ogden–Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was \(\kappa = 0.1404 \pm 0.0028.\) The constitutive parameters μ, k1 and k2 were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for μ, k1 and k2 were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.

167 citations


Cited by
More filters
Book
01 Jan 1991
TL;DR: In this paper, the Third Edition of the Third edition of Linear Systems: Local Theory and Nonlinear Systems: Global Theory (LTLT) is presented, along with an extended version of the second edition.
Abstract: Series Preface * Preface to the Third Edition * 1 Linear Systems * 2 Nonlinear Systems: Local Theory * 3 Nonlinear Systems: Global Theory * 4 Nonlinear Systems: Bifurcation Theory * References * Index

1,977 citations

Journal ArticleDOI
TL;DR: Computer and Robot Vision Vol.
Abstract: Computer and Robot Vision Vol. 1, by R.M. Haralick and Linda G. Shapiro, Addison-Wesley, 1992, ISBN 0-201-10887-1.

1,426 citations

Journal ArticleDOI
TL;DR: It is shown that the combination of the phase-field model and local adaptive refinement provides an effective method for simulating fracture in three dimensions.

1,260 citations

01 Jan 2016
TL;DR: The linear and nonlinear programming is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading linear and nonlinear programming. As you may know, people have search numerous times for their favorite novels like this linear and nonlinear programming, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some infectious bugs inside their desktop computer. linear and nonlinear programming is available in our book collection an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the linear and nonlinear programming is universally compatible with any devices to read.

943 citations