scispace - formally typeset
Search or ask a question
Author

Cory E. Weber

Other affiliations: Google, Infineon Technologies, Rafael Advanced Defense Systems  ...read more
Bio: Cory E. Weber is an academic researcher from Intel. The author has contributed to research in topics: Transistor & PMOS logic. The author has an hindex of 21, co-authored 57 publications receiving 2536 citations. Previous affiliations of Cory E. Weber include Google & Infineon Technologies.


Papers
More filters
Proceedings ArticleDOI
12 Jun 2012
TL;DR: In this paper, a 22nm generation logic technology is described incorporating fully-depleted tri-gate transistors for the first time, which provides steep sub-threshold slopes (∼70mV/dec) and very low DIBL ( ∼50m V/V).
Abstract: A 22nm generation logic technology is described incorporating fully-depleted tri-gate transistors for the first time. These transistors feature a 3rd-generation high-k + metal-gate technology and a 5th generation of channel strain techniques resulting in the highest drive currents yet reported for NMOS and PMOS. The use of tri-gate transistors provides steep subthreshold slopes (∼70mV/dec) and very low DIBL (∼50mV/V). Self-aligned contacts are implemented to eliminate restrictive contact to gate registration requirements. Interconnects feature 9 metal layers with ultra-low-k dielectrics throughout the interconnect stack. High density MIM capacitors using a hafnium based high-k dielectric are provided. The technology is in high volume manufacturing.

705 citations

Proceedings ArticleDOI
08 Dec 2002
TL;DR: In this paper, a leading edge 90 nm technology with 1.2 nm physical gate oxide, 50 nm gate length, strained silicon, NiSi, 7 layers of Cu interconnects, and low k carbon-doped oxide (CDO) for high performance dense logic is presented.
Abstract: A leading edge 90 nm technology with 1.2 nm physical gate oxide, 50 nm gate length, strained silicon, NiSi, 7 layers of Cu interconnects, and low k carbon-doped oxide (CDO) for high performance dense logic is presented. Strained silicon is used to increase saturated NMOS and PMOS drive currents by 10-20% and mobility by >50%. Aggressive design rules and unlanded contacts offer a 1.0 /spl mu/m/sup 2/ 6-T SRAM cell using 193 nm lithography.

309 citations

Proceedings ArticleDOI
13 Dec 2004
TL;DR: A 65nm generation logic technology with 1.2nm physical gate oxide, 35nm gate length, enhanced channel strain, NiSi, 8 layers of Cu interconnect, and low-k ILD for dense high performance logic is presented in this article.
Abstract: A 65nm generation logic technology with 1.2nm physical gate oxide, 35nm gate length, enhanced channel strain, NiSi, 8 layers of Cu interconnect, and low-k ILD for dense high performance logic is presented. Transistor gate length is scaled down to 35nm while not scaling the gate oxide as a means to improve performance and reduce power. Increased NMOS and PMOS drive currents are achieved by enhanced channel strain and junction engineering. 193nm lithography along with APSM mask technology is used on critical layers to provide aggressive design rules and a 6-T SRAM cell size of 0.57/spl mu/m/sup 2/. Process yield, performance and reliability are demonstrated on a 70 Mbit SRAM test vehicle with >0.5 billion transistors.

264 citations

Proceedings ArticleDOI
01 Dec 2008
TL;DR: In this paper, a 32 nm generation logic technology is described incorporating 2nd-generation high-k + metal-gate technology, 193 nm immersion lithography for critical patterning layers, and enhanced channel strain techniques.
Abstract: A 32 nm generation logic technology is described incorporating 2nd-generation high-k + metal-gate technology, 193 nm immersion lithography for critical patterning layers, and enhanced channel strain techniques. The transistors feature 9 Aring EOT high-k gate dielectric, dual band-edge workfunction metal gates, and 4th-generation strained silicon, resulting in the highest drive currents yet reported for NMOS and PMOS. Process yield, performance and reliability are demonstrated on a 291 Mbit SRAM test vehicle, with 0.171 mum2 cell size, containing >1.9 billion transistors.

220 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: In this article, a 32nm logic technology for high performance microprocessors is described, and the impact of SRAM cell and array size on Vccmin is reported, including the effect of array size and cell cell cell size.
Abstract: A 32nm logic technology for high performance microprocessors is described. 2nd generation high-k + metal gate transistors provide record drive currents at the tightest gate pitch reported for any 32nm or 28nm logic technology. NMOS drive currents are 1.62mA/um Idsat and 0.231mA/um Idlin at 1.0V and 100nA/um I off . PMOS drive currents are 1.37mA/um Idsat and 0.240mA/um Idlin at 1.0V and 100nA/um I off . The impact of SRAM cell and array size on Vccmin is reported.

214 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, a-IGZO is used as the channel layer for flexible and transparent TFTs. But, the performance of the flexible TFT was evaluated at room temperature and at temperatures up to 500 °C.
Abstract: Recently, we have demonstrated the potential of amorphous oxide semiconductors (AOSs) for developing flexible thin-film transistors (TFTs). A material exploration of AOSs desired as the channel layer in TFTs is most important for developing high-performance devices. Here, we report our concept of material exploration for AOSs in high-performance flexible and transparent TFTs from the viewpoints of chemical bonding and electronic structure in oxide semiconductors. We find that amorphous In–Ga–Zn–O (a-IGZO) exhibits good carrier transport properties such as reasonably high Hall mobilities (>10 cm2V-1s-1) and a good controllability of carrier concentration from <1015 to 1020 cm-3. In addition, a-IGZO films have better chemical stabilities in ambient atmosphere and at temperatures up to 500 °C. The flexible and transparent TFT fabricated using a-IGZO channel layer at room temperature operated with excellent performances, such as normally-off characteristics, on/off current ratios (~106) and field-effect mobilities (~10 cm2V-1s-1), which are higher by an order of magnitude than those of amorphous Si:H and organics TFTs.

1,634 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: In this article, a double-gate tunnel field effect transistor (DG tunnel FET) with a high-kappa gate dielectric was proposed and validated using realistic design parameters, showing an on-current as high as 0.23 mA for a gate voltage of 1.8 V, an off-current of less than 1 fA (neglecting gate leakage), an improved average sub-threshold swing of 57 mV/dec, and a minimum point slope of 11 mV /dec.
Abstract: In this paper, we propose and validate a novel design for a double-gate tunnel field-effect transistor (DG tunnel FET), for which the simulations show significant improvements compared with single-gate devices using a gate dielectric. For the first time, DG tunnel FET devices, which are using a high-gate dielectric, are explored using realistic design parameters, showing an on-current as high as 0.23 mA for a gate voltage of 1.8 V, an off-current of less than 1 fA (neglecting gate leakage), an improved average subthreshold swing of 57 mV/dec, and a minimum point slope of 11 mV/dec. The 2D nature of tunnel FET current flow is studied, demonstrating that the current is not confined to a channel at the gate-dielectric surface. When varying temperature, tunnel FETs with a high-kappa gate dielectric have a smaller threshold voltage shift than those using SiO2, while the subthreshold slope for fixed values of Vg remains nearly unchanged, in contrast with the traditional MOSFET. Moreover, an Ion/Ioff ratio of more than 2 times 1011 is shown for simulated devices with a gate length (over the intrinsic region) of 50 nm, which indicates that the tunnel FET is a promising candidate to achieve better-than-ITRS low-standby-power switch performance.

1,230 citations