scispace - formally typeset
Search or ask a question
Author

Coryl Jing Jun Lee

Other affiliations: Temasek Polytechnic
Bio: Coryl Jing Jun Lee is an academic researcher from Agency for Science, Technology and Research. The author has contributed to research in topics: Materials science & Corrosion. The author has an hindex of 10, co-authored 27 publications receiving 478 citations. Previous affiliations of Coryl Jing Jun Lee include Temasek Polytechnic.

Papers
More filters
Journal ArticleDOI
TL;DR: Preliminary stability studies indicate that CuO may be more stable than Cu2O as a photocathode for PEC water-splitting, and sol-gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control.
Abstract: Cu2O and CuO are attractive photocatalytic materials for water splitting due to their earth abundance and low cost. In this paper, we report the deposition of Cu2O and CuO thin films by a sol–gel spin-coating process. Sol–gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control. Pure-phase Cu2O and CuO films were obtained by thermal annealing at 500 °C in nitrogen and ambient air, respectively. The films were successfully incorporated as photocathodes in a photoelectrochemical (PEC) cell, achieving photocurrents of −0.28 mA cm−2 and −0.35 mA cm−2 (for Cu2O and CuO, respectively) at 0.05 V vs. a reversible hydrogen electrode (RHE). The Cu2O photocurrent was enhanced to −0.47 mA cm−2 upon incorporation of a thin layer of a NiOx co-catalyst. Preliminary stability studies indicate that CuO may be more stable than Cu2O as a photocathode for PEC water-splitting.

187 citations

Journal ArticleDOI
TL;DR: In this paper, a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu(+)-oleylamine complex at 220 °C to form copper nanowires and subsequent reaction with Au(3+) at different temperatures of 140, 220 and 300 °C.
Abstract: Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu(+)-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au(3+) at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to the initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.

54 citations

Journal ArticleDOI
TL;DR: Photochemical deposition of Co and Ni based oxygen evolution catalysts on hematite nanorods cathodically shifted the onset potential of photocurrent near to the flat band potential of hematites.

51 citations

Journal ArticleDOI
TL;DR: In this paper, a novel Co9S8-NixSy/Ni foam composite material was synthesized through the thermal decomposition of a cobalt-thiourea molecular precursor onto a 3D metallic support.
Abstract: A novel Co9S8–NixSy/Ni foam composite material was synthesized through the thermal decomposition of a cobalt–thiourea molecular precursor onto a 3D metallic support. The obtained electrode exhibited good activity toward the hydrogen evolution reaction in an alkaline medium, requiring a small overpotential of 163 mV at a current density of 10 mA cm−2, which is one of the lowest ever reported among transition metal sulfide materials.

50 citations

Journal ArticleDOI
TL;DR: The efficiency of the photocatalyst is enhanced using an amorphous cobalt oxide cocatalyst using the WO3 film, which shows an improvement of up to 40% in photocurrent generation and 34% in hydrogen gas evolution.
Abstract: Cocatalysts, when loaded onto a water splitting photocatalyst, accelerate the gas evolution reaction and improve the efficiency of the photocatalyst. In this paper, we report that the efficiency of the photocatalyst is enhanced using an amorphous cobalt oxide cocatalyst. The WO3 film, when loaded with amorphous or nanocrystalline Co3O4, shows an improvement of up to 40% in photocurrent generation and 34% in hydrogen gas evolution. The effect of cocatalyst crystallinity on performance was systematically studied, and we found that the photocurrent deteriorates with the conversion of the cocatalyst to a highly crystalline phase at an annealing temperature of 500 °C. The mechanism of this effect was studied in detail using electrochemical impedance spectroscopy, and the enhancement effect produced by the amorphous cocatalyst is attributed to the large density of unsaturated catalytically active sites in the amorphous material.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper provided an overview of the concept of heterojunction construction and more importantly, the current state-of-the-art for the efficient, visible-light driven junction water splitting photo(electro)catalysts reported over the past ten years.
Abstract: Solar driven catalysis on semiconductors to produce clean chemical fuels, such as hydrogen, is widely considered as a promising route to mitigate environmental issues caused by the combustion of fossil fuels and to meet increasing worldwide demands for energy. The major limiting factors affecting the efficiency of solar fuel synthesis include; (i) light absorption, (ii) charge separation and transport and (iii) surface chemical reaction; therefore substantial efforts have been put into solving these problems. In particular, the loading of co-catalysts or secondary semiconductors that can act as either electron or hole acceptors for improved charge separation is a promising strategy, leading to the adaptation of a junction architecture. Research related to semiconductor junction photocatalysts has developed very rapidly and there are a few comprehensive reviews in which the strategy is discussed (A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253–278, K. Li, D. Martin, and J. Tang, Chinese Journal of Catalysis, 2011, 32, 879–890, R. Marschall, Advanced Functional Materials, 2014, 24, 2421–2440). This critical review seeks to give an overview of the concept of heterojunction construction and more importantly, the current state-of-the art for the efficient, visible-light driven junction water splitting photo(electro)catalysts reported over the past ten years. For water splitting, these include BiVO4, Fe2O3, Cu2O and C3N4, which have attracted increasing attention. Experimental observations of the proposed charge transfer mechanism across the semiconductor/semiconductor/metal junctions and the resultant activity enhancement are discussed. In parallel, recent successes in the theoretical modelling of semiconductor electronic structures at interfaces and how these explain the functionality of the junction structures is highlighted.

1,891 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations

Journal ArticleDOI
TL;DR: It was found that under illumination, the Co-Pi catalyst can efficiently collect and store photogenerated holes from the hematite electrode and produce increased water oxidation efficiencies which is attributed to a combination of superior charge separation and increased surface area of the porous catalytic film.
Abstract: Uniform thin films of hematite (α-Fe(2)O(3)) deposited by atomic layer deposition (ALD) coated with varying amounts of the cobalt phosphate catalyst, "Co-Pi," were investigated with steady-state and transient photoelectrochemical measurements and impedance spectroscopy. Systematic studies as a function of Co-Pi thickness were performed in order to clarify the mechanism by which Co-Pi enhances the water-splitting performance of hematite electrodes. It was found that under illumination, the Co-Pi catalyst can efficiently collect and store photogenerated holes from the hematite electrode. This charge separation reduces surface state recombination which results in increased water oxidation efficiency. It was also found that thicker Co-Pi films produced increased water oxidation efficiencies which is attributed to a combination of superior charge separation and increased surface area of the porous catalytic film. These combined results provide important new understanding of the enhancement and limitations of the Co-Pi catalyst coupled with semiconductor electrodes for water-splitting applications.

594 citations

Journal ArticleDOI
21 Jun 2016
TL;DR: Recent progress in manipulating hematite for PEC water splitting through various approaches is reviewed, focused on e.g. enhancing light absorption, water oxidation kinetics, and charge carrier collection efficiency.
Abstract: Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable, renewable and clean energy economy. Hematite (α-Fe2O3) based photoanodes offer promise for such applications, due to their high chemical stability, great abundance and low cost. Despite these promising properties, progress towards the manufacture of practical water splitting devices has been limited. This review is intended to highlight recent advancements and the limitations that still hamper the full utilization of hematite electrodes in PEC water splitting systems. We review recent progress in manipulating hematite for PEC water splitting through various approaches, focused on e.g. enhancing light absorption, water oxidation kinetics, and charge carrier collection efficiency. As the morphology affects various properties, progress in morphological characterization from thicker planar films to recent ultrathin nanophotonic morphologies is also examined. Special emphasis has been given to various ultrathin films and nanophotonic structures which have not been given much attention in previous review articles.

567 citations

Journal ArticleDOI
TL;DR: This review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting, which highlights photonic and electrical driven water splitting together with photovoltaic‐integrated solar‐driven water electrolysis.
Abstract: Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

566 citations