scispace - formally typeset
Search or ask a question
Author

Cosmos Magorokosho

Bio: Cosmos Magorokosho is an academic researcher from International Maize and Wheat Improvement Center. The author has contributed to research in topics: Germplasm & Diallel cross. The author has an hindex of 23, co-authored 49 publications receiving 2903 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analysis of over 20,000 historical African maize trials suggests the crop will better cope with climate change under rain-fed management, and that optimal rainfed conditions would mean 65% of maize-growing areas in Africa would be likely to experience yield losses, compared with 100% under drought conditions.
Abstract: An analysis of over 20,000 historical African maize trials suggests the crop will better cope with climate change under rain-fed management. For a 1 °C temperature rise, optimal rain-fed conditions would mean 65% of maize-growing areas in Africa would be likely to experience yield losses, compared with 100% under drought conditions.

983 citations

Journal ArticleDOI
TL;DR: Tolerance to combined drought and heat stress in maize was genetically dis- tinct from tolerance to individual stresses, and tolerance to either stress alone did not confer tolerance to Combined drought andHeat stress, which has major implications for maize drought breeding.
Abstract: Low maize (Zea mays L.) yields and the impacts of climate change on maize production highlight the need to improve yields in eastern and south - ern Africa. Climate projections suggest higher temperatures within drought-prone areas. research in model species suggests that tol - erance to combined drought and heat stress is genetically distinct from tolerance to either stress alone, but this has not been confirmed in maize. In this study we evaluated 300 maize inbred lines testcrossed to CML539. Experiments were conducted under optimal conditions, reproduc - tive stage drought stress, heat stress, and com - bined drought and heat stress. Lines with high levels of tolerance to drought and combined drought and heat stress were identified. Signifi - cant genotype × trial interaction and very large plot residuals were observed; consequently, the repeatability of individual managed stress trials was low. Tolerance to combined drought and heat stress in maize was genetically dis - tinct from tolerance to individual stresses, and tolerance to either stress alone did not confer tolerance to combined drought and heat stress. This finding has major implications for maize drought breeding. Many current drought donors and key inbreds used in widely grown African hybrids were susceptible to drought stress at elevated temperatures. Several donors toler - ant to drought and combined drought and heat stress, notably La p osta Sequia C7-F64-2-6-2-2 and DTpYC9-F46-1-2-1-2, need to be incorpo - rated into maize breeding pipelines.

240 citations

Journal ArticleDOI
TL;DR: It is demonstrated that genomic selection is more effective than pedigree-based conventional phenotypic selection for increasing genetic gains in grain yield under drought stress in tropical maize.
Abstract: Genomic selection incorporates all the available marker information into a model to predict genetic values of breeding progenies for selection. The objective of this study was to estimate genetic gains in grain yield from genomic selection (GS) in eight bi-parental maize populations under managed drought stress environments. In each population, 148 to 300 F₂:₃ (C₀) progenies were derived and crossed to a single-cross tester from a complementary heterotic group. The resulting testcrosses of each population were evaluated under two to four managed drought stress and three to four well-watered conditions in different locations and genotyped with 191 to 286 single nucleotide polymorphism (SNP) markers. The top 10% families were selected from C₀ using a phenotypic selection index and were intermated to form C₁. Selections both at C₁ and C₂ were based on genomic estimated breeding values (GEBVs). The best lines from C₀ were also advanced using a pedigree selection scheme. For genetic gain studies, a total of 55 entries representing the eight populations were crossed to a single-cross tester, and evaluated in four managed drought stress environments. Each population was represented by bulk seed containing equal amounts of seed of C₀, C₁, C₂, C₃, parents, F₁s, and lines developed via pedigree selection. Five commercial checks were included for comparison. The average gain from genomic selection per cycle across eight populations was 0.086 Mg ha–¹. The average grain yield of C₃–derived hybrids was significantly higher than that of hybrids derived from C₀. Hybrids derived from C₃ produced 7.3% (0.176 Mg ha–¹) higher grain yield than those developed through the conventional pedigree breeding method. The study demonstrated that genomic selection is more effective than pedigree-based conventional phenotypic selection for increasing genetic gains in grain yield under drought stress in tropical maize.

229 citations

Journal ArticleDOI
TL;DR: The aerial sensing platform designed for phenotyping studies has the potential to effectively assist in crop genetic improvement against abiotic stresses like low-N provided that sensors have enough resolution for plot level data collection.
Abstract: Recent developments in unmanned aerial platforms (UAP) have provided research opportunities in assessing land allocation and crop physiological traits, including response to abiotic and biotic stresses. UAP-based remote sensing can be used to rapidly and cost-effectively phenotype large numbers of plots and field trials in a dynamic way using time series. This is anticipated to have tremendous implications for progress in crop genetic improvement. We present the use of a UAP equipped with sensors for multispectral imaging in spatial field variability assessment and phenotyping for low-nitrogen (low-N) stress tolerance in maize. Multispectral aerial images were used to (1) characterize experimental fields for spatial soil-nitrogen variability and (2) derive indices for crop performance under low-N stress. Overall, results showed that the aerial platform enables to effectively characterize spatial field variation and assess crop performance under low-N stress. The Normalized Difference Vegetation Index (NDVI) data derived from spectral imaging presented a strong correlation with ground-measured NDVI, crop senescence index and grain yield. This work suggests that the aerial sensing platform designed for phenotyping studies has the potential to effectively assist in crop genetic improvement against abiotic stresses like low-N provided that sensors have enough resolution for plot level data collection. Limitations and future potential uses are also discussed.

229 citations

Journal ArticleDOI
TL;DR: Pairwise comparisons across three distinct sets of germplasm showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin.
Abstract: Characterization of genetic diversity is of great value to assist breeders in parental line selection and breeding system design. We screened 770 maize inbred lines with 1,034 single nucleotide polymorphism (SNP) markers and identified 449 high-quality markers with no germplasm-specific biasing effects. Pairwise comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), and Brazil (94), showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin. Temperate and tropical/subtropical germplasm clearly clustered into two separate groups. The temperate germplasm could be further divided into six groups consistent with known heterotic patterns. The greatest genetic divergence was observed between temperate and tropical/subtropical lines, followed by the divergence between yellow and white kernel lines, whereas the least divergence was observed between dent and flint lines. Long-term selection for hybrid performance has contributed to significant allele differentiation between heterotic groups at 20% of the SNP loci. There appeared to be substantial levels of genetic variation between different breeding pools as revealed by missing and unique alleles. Two SNPs developed from the same candidate gene were associated with the divergence between two opposite Chinese heterotic groups. Associated allele frequency change at two SNPs and their allele missing in Brazilian germplasm indicated a linkage disequilibrium block of 142 kb. These results confirm the power of SNP markers for diversity analysis and provide a feasible approach to unique allele discovery and use in maize breeding programs.

216 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations

Journal ArticleDOI
07 Jan 2016-Nature
TL;DR: It is shown that droughts and extreme heat significantly reduced national cereal production by 9–10%, whereas the analysis could not identify an effect from floods and extreme cold in the national data, which may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.
Abstract: In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.

1,934 citations

Journal ArticleDOI
TL;DR: In this paper, the impacts of global climate change on food systems are expected to be widespread, complex, geographically and temporally variable, and profoundly influenced by socioeconomic conditions, and some synergies among food security, adaptati...
Abstract: Food systems contribute 19%–29% of global anthropogenic greenhouse gas (GHG) emissions, releasing 9,800–16,900 megatonnes of carbon dioxide equivalent (MtCO2e) in 2008. Agricultural production, including indirect emissions associated with land-cover change, contributes 80%–86% of total food system emissions, with significant regional variation. The impacts of global climate change on food systems are expected to be widespread, complex, geographically and temporally variable, and profoundly influenced by socioeconomic conditions. Historical statistical studies and integrated assessment models provide evidence that climate change will affect agricultural yields and earnings, food prices, reliability of delivery, food quality, and, notably, food safety. Low-income producers and consumers of food will be more vulnerable to climate change owing to their comparatively limited ability to invest in adaptive institutions and technologies under increasing climatic risks. Some synergies among food security, adaptati...

1,598 citations