scispace - formally typeset
Search or ask a question
Author

Craig A. Rogers

Other affiliations: Virginia Tech
Bio: Craig A. Rogers is an academic researcher from University of South Carolina. The author has contributed to research in topics: Actuator & Electrical impedance. The author has an hindex of 38, co-authored 137 publications receiving 7099 citations. Previous affiliations of Craig A. Rogers include Virginia Tech.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a complete, unified, one-dimensional constitutive model of shape memory materials is developed and presented in the form of a thermomechanical model for shape memory alloys.
Abstract: The use of the thermoelastic martensitic transformation and its reverse transformation has recently been proposed and demonstrated for several active control ap plications. However, the present constitutive models have lacked several important funda mental concepts that are essential for many of the proposed intelligent material system ap plications such as shape memory hybrid composites.A complete, unified, one-dimensional constitutive model of shape memory materials is developed and presented in this paper. The thermomechanical model formulation herein will investigate important material characteristics involved with the internal phase transformation of shape memory alloys. These characteristics include energy dissipation in the material that governs the damping behavior, stress-strain-temperature relations for pseudoelasticity, and the shape memory effect. Some numerical examples using the model are also presented.

1,222 citations

Journal ArticleDOI
TL;DR: In this paper, a coupled electro-mechanical analysis of piezoelectric ceramic (PZT) actuators integrated in mechanical systems to determine the actuator power consumption and energy transfer is presented.
Abstract: This article presents a coupled electro-mechanical analysis of piezoelectric ceramic (PZT) actuators integrated in mechanical systems to determine the actuator power consumption and energy transfer in the electro-mechanical systems. For a material system with integrated PZT actua tors, the power consumed by the PZT actuators consists of two parts: the energy used to drive the system, which is dissipated in terms of heat as a result of the structural damping, and energy dissi pated by the PZT actuators themselves because of their dielectric loss and internal damping. The coupled analysis presented herein uses a simple model, a PZT actuator-driven one-degree-of- freedom spring-mass-damper system, to illustrate the methodology used to determine the actuator power consumption and energy flow in the coupled electro-mechanical systems. This method can be applied to more complicated mechanical structures or systems, such as a fluid-loaded shell for active structural acoustic control. The determination of the act...

741 citations

Journal ArticleDOI
TL;DR: In this article, a frequency domain impedance-signature-based technique for health monitoring of an assembled truss structure is presented. But unlike conventional modal analysis approaches, the technique uses piezoceramic (PZT) elements as integrated sensor-actuators for acquisition of signature pattern of the truss.
Abstract: This paper presents a frequency domain impedance-signature-based technique for health monitoring of an assembled truss structure. Unlike conventional modal analysis approaches, the technique uses piezoceramic (PZT) elements as integrated sensor-actuators for acquisition of signature pattern of the truss. The concept of the localization of sensing/actuation area for damage detection of an assembled structure is presented for the first time. Through a PZT patch bonded to a truss node and the measurement of its electric admittance, which is coupled with the mechanical impedance of the truss, the signature pattern of a truss is monitored. The admittance of a truss in question is compared with that of the original healthy truss. Statistic algorithm is then applied to extract a damage index of the truss based on the signature pattern difference. Experimental proof that over a selected band, the detection range of a bonded PZT sensor on a truss is highly constrained to its immediate neighborhood is presented. This characteristic allows accurate determination of the damage location in a complex real-world structure with a minimum mathematical modeling and numerical computation.

400 citations

Journal ArticleDOI
TL;DR: In this paper, an orthotropic angle-ply laminate with an embedded piezoceramic patch is presented to show the coupling of bending and extension, and a comparison between the current work and that of Dimitriadis et al. is given.
Abstract: Classical laminated plate theory (CLPT) is applied to a laminate plate with induced strain actuators, such as piezoceramic patch, bonded to its surface or embedded within the laminate to develop an induced strain actuation theory that allows for the actuator patch to be spatially distributed. When piezoceramic patches are subjected to voltage fields, the equivalent external forces induced by piezoceramic patches can be determined upon the assumption of free constraint for the expansion or contraction of piezoceramic patches. This assumption is generally done in thermal expansion problem. Several examples, including pure bending and pure extension, are illustrated. For the case of pure bending, a comparison between the current work and that of Dimitriadis et al. (1989) is given. In addition, an orthotropic angle-ply laminate with an embedded piezoceramic patch is presented to show the coupling of bending and extension.

292 citations

Journal ArticleDOI
TL;DR: Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid as discussed by the authors, which is one of the direct influences on the mechanical properties of a magnetic fluid.
Abstract: Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. Magnetorheological effect is one of the direct influences on the mechanical properties of a f...

252 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

07 Apr 2002
TL;DR: An updated review covering the years 1996 2001 will summarize the outcome of an updated review of the structural health monitoring literature, finding that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition.
Abstract: Staff members at Los Alamos National Laboratory (LANL) produced a summary of the structural health monitoring literature in 1995. This presentation will summarize the outcome of an updated review covering the years 1996 2001. The updated review follows the LANL statistical pattern recognition paradigm for SHM, which addresses four topics: 1. Operational Evaluation; 2. Data Acquisition and Cleansing; 3. Feature Extraction; and 4. Statistical Modeling for Feature Discrimination. The literature has been reviewed based on how a particular study addresses these four topics. A significant observation from this review is that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition. As such, the discrimination procedures employed are often lacking the appropriate rigor necessary for this technology to evolve beyond demonstration problems carried out in laboratory setting.

1,467 citations

Journal ArticleDOI
TL;DR: In this article, a one-dimensional constitutive model for the thermomechanical behavior of shape memory alloys is developed based on previous work by Liang and Tanaka, and an internal variable ap-proach is used to deri...
Abstract: A one-dimensional constitutive model for the thermomechanical behavior of shape memory alloys is developed based on previous work by Liang and Tanaka. An internal variable ap proach is used to deri...

1,444 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the state of the art of Lamb wave-based damage identification approaches for composite structures, addressing the advances and achievements in these techniques in the past decades, is provided in this paper.

1,350 citations

01 Jan 1993
TL;DR: In this paper, a one-dimensional constitutive model for the thermomechanical behavior of shape memory alloys is developed based on previous work by Liang and Tanaka, where an internal variable approach is used to derive a comprehensive constitutive law for shape memory alloy materials from first principles without the assumption of constant material functions.
Abstract: A one-dimensional constitutive model for the thermomechanical behavior of shape memory alloys is developed based on previous work by Liang and Tanaka. An internal variable approach is used to derive a comprehensive constitutive law for shape memory alloy materials from first principles without the assumption of constant material functions. This constitutive law is of such a form that it is well suited to further practical engineering applications and calculations. A separation of the martensite fraction internal variable into temperature-induced and stress-induced parts is presented and justified which then allows the derived constitutive law to accurately represent both the pseudoelastic and shape memory effects at all temperatures. Several numerical examples are given which illustrate the ability of the constitutive law to capture the unique thermomechanical behavior of shape memory alloys due to their internal phase transformations with stress and temperature.

1,350 citations