scispace - formally typeset
Search or ask a question
Author

Craig A. Smith

Bio: Craig A. Smith is an academic researcher from Amgen. The author has contributed to research in topics: Receptor & Tumor necrosis factor alpha. The author has an hindex of 15, co-authored 18 publications receiving 8290 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Recurrent treatments with LZ–huTRAIL actively suppressed growth of the TRAIL–sensitive human mammary adenocarcinoma cell line MDA–231 in CB.17 (SCID) mice, and histologic examination of tumors from SCID mice treated with Lz–hu TRAIL demonstrated clear areas of apoptotic necrosis within 9–12 hours of injection.
Abstract: To evaluate the utility of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a cancer therapeutic, we created leucine zipper (LZ) forms of human (hu) and murine (mu) TRAIL to promote and stabilize the formation of trimers. Both were biologically active, inducing apoptosis of both human and murine target cells in vitro with similar specific activities. In contrast to the fulminant hepatotoxicity of LZ-huCD95L in vivo, administration of either LZ-huTRAIL or LZ-muTRAIL did not seem toxic to normal tissues of mice. Finally, repeated treatments with LZ-huTRAIL actively suppressed growth of the TRAIL-sensitive human mammary adenocarcinoma cell line MDA-231 in CB.17 (SCID) mice, and histologic examination of tumors from SCID mice treated with LZ-huTRAIL demonstrated clear areas of apoptotic necrosis within 9-12 hours of injection.

2,512 citations

Journal ArticleDOI
TL;DR: The identification of a distinct receptor for TRAIL, TRAIL‐R2, by ligand‐based affinity purification and subsequent molecular cloning suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.
Abstract: TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.

1,190 citations

Journal ArticleDOI
TL;DR: In this article, a significant proportion of previously activated human T cells undergo apoptosis when triggered through the CD3/T cell receptor complex, a process termed activation-induced cell death (AICD).
Abstract: A significant proportion of previously activated human T cells undergo apoptosis when triggered through the CD3/T cell receptor complex, a process termed activation-induced cell death (AICD). Ligation of Fas on activated T cells by either Fas antibodies or recombinant human Fas-ligand (Fas-L) also results in cytolysis. We demonstrate that these two pathways of apoptosis are causally related. Stimulation of previously activated T cells resulted in the expression of Fas-L mRNA and lysis of Fas-positive target cells. Fas-L antagonists inhibited AICD of T cell clones and staphylococcus enterotoxin B (SEB)-specific T cell lines. The data indicate AICD in previously stimulated T cells is mediated by Fas/Fas-L interactions.

949 citations

Journal ArticleDOI
01 Dec 1997-Immunity
TL;DR: Transient overexpression of TRAil-R4 in cells normally sensitive to TRAIL-mediated killing confers complete protection, suggesting that one function of TRAilsR4 may be inhibition of TRAIL cytotoxicity.

884 citations

Journal ArticleDOI
TL;DR: These findings not only provide a novel insight into the pathogenesis of the transplant-related atherosclerosis, but also point to a new therapeutic strategy that involves targeting of homing, differentiation and proliferation of putative smooth-muscle progenitor cells derived from the recipient.
Abstract: Our findings not only provide a novel insight into the pathogenesis of the transplant-related atherosclerosis, but also point to a new therapeutic strategy that involves targeting of homing, differentiation and proliferation of putative smooth-muscle progenitor cells derived from the recipient. This is the first report demonstrating that circulating progenitor cells contribute to the development of proliferative diseases. AKIO SAIURA, MASATAKA SATA, YASUNOBU HIRATA, RYOZO NAGAI MASATOSHI MAKUUCHI Department of Surgery, University of Tokyo, Graduate School of Medicine, Tokyo, Japan, Department of Cardiovascular Medicine University of Tokyo, Graduate School of Medicine, Tokyo, Japan A.S. and M.S. supervised this study equally as senior authors Email: sata-2im@h.u-tokyo.ac.jp 1. McKay, R. Stem cells-hype and hope. Nature 406, 361–364 (2000). 2. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997). 3. Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96 (2000). 4. Carmeliet, P. One cell, two fates. Nature 408, 43–45 (2000). 5. Clarke, D.L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

724 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Two types of cloned helper T cells are described, defined primarily by differences in the pattern of lymphokines ynthesized, and the different functions of the two types of cells and their lymphokine synthesis are discussed.
Abstract: Effector functions in the immune system are carried out by a variety of cell types, and as our understanding of the complexity of the system expands, the number of recognized subdivisions of cell types also continues to increase. B lymphocytes, producing antibody, were initially distinguished from T lymphocytes, which provide help for B cells (1, 2). The T-cell population was further divided when surface markers allowed separation of helper cells from cytotoxic cells (3). Although there were persistent reports of heterogeneity in the helper T-cell compartment (reviewed below), only relatively recently were distinct types of helper cells resolved. In this review we describe the differences between two types of cloned helper T cells, defined primarily by differences in the pattern of lymphokines ynthesized, and we also discuss the different functions of the two types of cells and their lymphokines. Patterns of lymphokine synthesis are convenient and explicit markers to describe T-cell subclass differences, and evidence increases that many of the functions of helper T cells are predicted by the functions of the lymphokines that they synthesize after activation by antigen and presenting cells. The separation of many mouse helper T-cell clones into these two distinct types is now well established, but their origin in normal T-cell populations is still not clear. Further divisions of helper T cells may have to be recognized before a complete picture of helper T-cell function can be obtained.

7,814 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival.
Abstract: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival. Certain cells have unique sensors, termed death receptors, on their surface. Death receptors detect the presence of extracellular death signals and, in response, they rapidly ignite the cell's intrinsic apoptosis machinery.

5,968 citations

Journal ArticleDOI
10 Mar 1995-Science
TL;DR: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells.
Abstract: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells. Various cells express Fas, whereas FasL is expressed predominantly in activated T cells. In the immune system, Fas and FasL are involved in down-regulation of immune reactions as well as in T cell-mediated cytotoxicity. Malfunction of the Fas system causes lymphoproliferative disorders and accelerates autoimmune diseases, whereas its exacerbation may cause tissue destruction.

4,190 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: The authors regret the inability to cite all of the primary literature contributing to this review due to length considerations, but wish to thank F. Chan, T. Migone, and J. Wang for insightful comments on the manuscript.

3,756 citations

Journal ArticleDOI
22 Nov 1999-Oncogene
TL;DR: It is argued that NF-κB functions more generally as a central regulator of stress responses and pairing stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Abstract: Sixteen years have passed since the description of the nuclear factor-кB (NF-кB) as a regulator of к light-chain gene expression in murine B lymphocytes (Sen & Baltimore, 1986a) During that time, over 4,000 publications have appeared, characterizing the family of Rel/NF-кB transcription factors involved in the control of a large number of normal and pathological cellular processes The physiological functions of NF-кB proteins include immunological and inflammatory responses, developmental processes, cellular growth and modulating effects on apoptosis In addition, these factors are activated in a number of diseases, including cancer, arthritis, acute and chronic inflammatory states, asthma, as well as neurodegenerative and heart diseases

3,728 citations